Similar documents
xy n n n- n n n n n xn n n nn n O n n n n n n n n

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

c a a ca c c% c11 c12 % s & %

56

橡魅力ある数学教材を考えよう.PDF

四校_目次~巻頭言.indd

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

T75 T55 T45 T67 T54 D81 D71 D51 D61 D41 T95 V83 V73 V63 L93 D81 D71 D51 D61 D41 T95 RX82 V83 V73 V63 L93

n S (n) = n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+


untitled

N72 T95 T75 T55 T45 T67 T54 N72 RX82 N40 L93 V83 V73 RX73 N51 S90 S80 D81 D51

untitled

31 33

( )


_1203new

203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3

CAT. No. 1102k 2011 E-3 B206-B243

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m


CG38.PDF

DC0 MC OFF THR ON MC AX AX MC SD AX AX SRD THR TH MC MC MC MC MC MC MC MC MC MC 9 0 9

INDEX p01-02 p03-04 p05-07 p08 p09-10 p011 p12-16 p17-18 Audio Philosophy Integrated Amplifier Introduction A-30/A-10 Super Audio CD Player Introducti

Chap9.dvi

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

main

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

SC- SC-RM SC-/G SC-/SE SC-/V SC-/VG SC-/VS SC-/U SC-C SC-LG SW- SW-RM SW-/G SW-/SE SW-/U SW-/3H SW-/2L SW-/3Q SW-/2E SW-C SW-RMC SW-C/U SW-P SW-LG SW-

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

untitled

KZ3N Series ø, ø U94V0 1 New New New New New 39% 15 Rc KZ3N KZ2N New New KZ3N KZ2N New 1

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

() ( ) ( )

ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ

NTN すべり軸受標準品シリーズ NTN すべり軸受標準品シリーズ 10

Ultrason® E, S, P – グレード一覧

2001 年度 『数学基礎 IV』 講義録

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Microsoft Word - 計算力学2007有限要素法.doc

7. 1 max max min f g h h(x) = max{f(x), g(x)} f g h l(x) l(x) = min{f(x), g(x)} f g 1 f g h(x) = max{f(x), g(x)} l(x) = min{f(x), g(x)} h(x) = 1 (f(x)

Transcription:

N

N

N

N

N

N

N

N

N

N

Q A

N

N{ N

N{

N{ N{

{ NN N

{ N { N{ N { N { N {

N

N{

N { {

N{

N{

{ N {