On N-Fractional Calculus of the Function $((z-b)^2-c)^{\frac{1}{3}}$

Similar documents
25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

2 ( ) i

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Tabulation of the clasp number of prime knots with up to 10 crossings

16_.....E...._.I.v2006


浜松医科大学紀要

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

Microsoft Word - PCM TL-Ed.4.4(特定電気用品適合性検査申込のご案内)

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

2

10-渡部芳栄.indd

〈論文〉興行データベースから「古典芸能」の定義を考える

_Y05…X…`…‘…“†[…h…•

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth


AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

日本内科学会雑誌第98巻第3号

ron.dvi

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

{.w._.p7_.....\.. (Page 6)

untitled

NINJAL Research Papers No.3

,,,,., C Java,,.,,.,., ,,.,, i

7,, i

ABSTRACT The movement to increase the adult literacy rate in Nepal has been growing since democratization in In recent years, about 300,000 peop

16−ª1“ƒ-07‘¬ŠÑ


井手友里子.indd

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

1..FEM FEM 3. 4.

鹿大広報149号

1 # include < stdio.h> 2 # include < string.h> 3 4 int main (){ 5 char str [222]; 6 scanf ("%s", str ); 7 int n= strlen ( str ); 8 for ( int i=n -2; i

Core Ethics Vol.

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

24 Depth scaling of binocular stereopsis by observer s own movements

Tsuken Technical Information 1

[ ]藤原武男

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

161 J 1 J 1997 FC 1998 J J J J J2 J1 J2 J1 J2 J1 J J1 J1 J J 2011 FIFA 2012 J 40 56

The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

FA

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

Vol. 5, 29 39, 2016 Good/Virtue actions for competitive sports athlete Actions and Choices that receive praise Yo Sato Abstract: This paper focuses on

2 33,**. + : +/* /++** +/* /++** +/* /++** /** /** F+ +*** F+ +*** / 1*42.,43 /14+,*42 /, , 134,.,43 / 0-41,*42.4, -/41,*43,34,,+4. +

28 Horizontal angle correction using straight line detection in an equirectangular image

elemmay09.pub


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).



25 Removal of the fricative sounds that occur in the electronic stethoscope

生研ニュースNo.132

卒業論文2.dvi


対朝鮮人絹織物移出と繊維専門商社の生産過程への進出

2 1 ( ) 2 ( ) i

untitled

2 except for a female subordinate in work. Using personal name with SAN/KUN will make the distance with speech partner closer than using titles. Last

<303288C991BD946797C797592E696E6464>


soturon.dvi

p _08森.qxd


tikeya[at]shoin.ac.jp The Function of Quotation Form -tte as Sentence-final Particle Tomoko IKEYA Kobe Shoin Women s University Institute of Linguisti


操作ガイド(本体操作編)

橡最終原稿.PDF

( ) ( ) (action chain) (Langacker 1991) ( 1993: 46) (x y ) x y LCS (2) [x ACT-ON y] CAUSE [BECOME [y BE BROKEN]] (1999: 215) (1) (1) (3) a. * b. * (4)

J No J. J

-like BCCWJ CD-ROM CiNii NII BCCWJ BCCWJ


Perspective-Taking Perspective-Taking.... Vol. No.

06’ÓŠ¹/ŒØŒì

地域共同体を基盤とした渇水管理システムの持続可能性


41 1. 初めに ) The National Theatre of the Deaf 1980

27 1 NP NP-completeness of Picross 3D without segment-information and that with height of one

日本内科学会雑誌第101巻第12号

評論・社会科学 84号(よこ)(P)/3.金子

Kyushu Communication Studies 第2号

04_学術.indd

When creating an interactive case scenario of a problem that may occur in the educational field, it becomes especially difficult to assume a clear obj

Web Web Web Web 1 1,,,,,, Web, Web - i -

Vol.57 No

【生】④木原資裕先生【本文】/【生】④木原資裕先生【本文】


_07.indd

(group A) (group B) PLE(Primary Leaving Examination) adobe Flash ipad 1 adobe Flash e-book ipad adobe Flash adobe Flash Pixton scratch PLE(Primary Lea

* * 2

1 ( 8:12) Eccles. 1:8 2 2




Transcription:

1878 2014 17-29 17 On N Fractional Calculus of the Function $((z-b)^{2}-c)^{\frac{1}{3}}$ Tsuyako Miyakoda Abstract We discuss the -fractional calculus $N$ of $f(z)=((z-b)^{2}-c)^{\xi}$. In order to do fractional calculus of $((z-b)^{2}-c) \int$, we consider four type s factorization of the equation and calculate $i. (f)_{\gamma}=(((z-b)^{2}-c)^{\int})_{\gamma}$ 2. $(f)_{\gamma}=(((z-b\rangle^{2}-c)^{-\s}((z-b)^{2}-c))_{\gamma}$ 3. $(f)_{\gamma}=(((z-b)^{2}-c)^{-}\s$ $((z-b)^{2}-c)^{2})_{\gamma}$ 4. $(f)_{\gamma}=((((z-b)^{2}-c)^{2}-c)\s)_{1})_{\gamma-1}$ We have four representations of fractional calculus. And then we show that these rour differen$l$ forms or $N$-fractional calculus are consistent in special case. And some identities are reported. 1 Introduction We adopt the following definition of the fractional calculus. (I) Definition. (by K. Nishimoto, [1] Vol. 1) Let $D=\{D_{-}, D_{+}\},$ $C=\{C_{-}, C_{+}\},$ be a curve along the cut joining $C_{-}$ two points $z$ and $-\infty+iim(z),$ $o_{+}$ be a curve along the cut joining two points $z$ and $\infty+iim(z),$ $D-$ be a domain surrounded by $C_{-},$ $D+$ be a domain surrounded by $c_{+}$ (Here $D$ contains the points over the curve $C$ ). Moreover, let $f=f(z)$ be a regular function in $D(z\in D)$, $f_{\nu} = (f)_{\nu}=c(f)_{\nu}$ $= \frac{\gamma(\nu+1)}{2\pi i}\int_{c}\frac{f(\zeta)d\zeta}{(\zeta-z)^{\nu+1}}(\nu\not\in Z^{-})$, (1)

18 where $(f)_{-m}= \lim_{\nuarrow-m}(f)_{\nu}(m\in Z^{+})$, (2) $\cdot$ $-\pi\leq arg(\zeta-z)\leq\pi$ for $C_{-},$ $0\leq arg(\zeta-z)\leq 2\pi$ for $\Gamma$ $\zeta\neq z,$ $z\in C,$ $\nu\in R,$ ; Gamma function, then is the fractional differintegration of arbitrary order $(f)_{\nu}$ $\nu$ (derivatives $\nu$ of order for $\nu>0$, and integrals of order for - $\nu<0$ ), with respect to $\nu$ $z$, of the function, if $f$ $ (f)_{\nu} <\infty.$ (II) On the fractional calculus operator $N^{\nu}[3]$ Theorem A. Let fractional calculus operator (Nishimoto s Operator) $N^{\nu}$ be $C+,$ $N^{\nu}=( \frac{\gamma(\nu+1)}{2\pi i}\int_{c}\frac{d(_{\backslash }}{(\zeta-z)^{\nu+1}})$ $(\nu\not\in Z^{-})$, (Refer to[l]) (3) with and deflne the binary operation $\circ$ then the aet $N^{-m}= \lim_{\nuarrow-m}n^{\nu} (m\in Z^{+})$, (4) as $N^{\beta}\circ N^{\alpha}f=N^{\beta}N^{\alpha}f=N^{\alpha}(N^{\beta}f)(\alpha, \beta\in R)$, (5) $\{N^{\nu}\}=\{N^{\nu} \nu\in R\}$ (6) $\nu$ is an Abelian product group (having continuous index ) which has the inverse transform operator $(N^{\nu})^{-1}=N^{-\nu}$ to the fractional calculus operator $N^{\nu}$, for the function such that $f$ $f\in F=\{f;0\neq f_{\nu} <\infty, \nu\in R\}$, wheoe $f=f(z)$ and $z\in C.$ $($ vis. $-\infty<\nu<\infty)$. $(Fbr our \infty$nvenience, $we call N^{\beta}\circ N^{a} as$ product $of N^{\beta} and N^{\alpha})$ $\{N^{\nu}\})$ F.O.G. is an Action product group which $\nu$ has continuous index for the set of F. (F.O.G. ; Fractional calculus operator group) $Th\infty remb$. Theorem C. Let $S:=\{\pm N^{\nu}\}\cup\{0\}=\{N^{\nu}\}\cup\{-N^{\nu}\}\cup\{0\}(\nu\in R)$. (7) Then the set $S$ is a commutative ring for the function $f\in F$, when the identity $N^{\alpha}+N^{\beta}=N^{\gamma} (N^{\alpha},N^{\beta},N^{\gamma}\in S)$ (8)

19 holds. [4] (III) In some previous papers, the following result are known as elementary properties. Lemma. We have [1] (i) $((z-c)^{\beta})_{\alpha}=e^{-i\pi\alpha} \frac{\gamma(\alpha-\beta)}{r(-\beta)}(z-c)^{\beta-\alpha} ( \frac{\gamma(\alpha-\beta)}{\gamma(-\beta)} <\infty)$ (ii) $(log(z-c))_{a}=-e^{-i\pi\alpha}\gamma(\alpha)(z-c)^{-\alpha} ( \Gamma(\alpha) <\infty)$ (iii) $((z-c)^{-u})_{-\alpha}=-e^{i\pi\alpha} \frac{1}{\gamma(\alpha)}\log(z-c), ( \Gamma(\alpha) <\infty)$ where $z-c\neq 0$ in (i), and $z-c\neq 0,1$ in (ii) and (iii), (iv) $(u \cdot v)_{\alpha}:=\sum_{k=0}^{\infty}\frac{\gamma(\alpha+1)}{k!\gamma(a+1-k)}u_{\alpha-k}v_{k}. (u=u(z),v=v(z))$ (i) Moreover in the previous works we refer to the next theorem [6]. Theorem D. We have $(((z-b)^{\beta}-c)^{\alpha})_{\gamma}=e^{-in\gamma}(z-b)^{\alpha\beta-\gamma} \sum_{k=0}^{\infty}\frac{[-\alpha]_{k}\gamma(\beta k-\alpha\beta+\gamma)}{k!\gamma(\beta k-\alpha\beta)}(\frac{c}{(z-b)^{\beta}})^{k}$ $( \frac{\gamma(\beta k-\alpha\beta+\gamma)}{\gamma(\beta k-().\beta)} <\infty)$, (9) (ii) and $(((z-b)^{\beta}-c)^{\alpha})_{n}=(-1)^{n}(z-b)^{\alpha\beta-n} \sum_{k=0}^{x}\frac{[-\alpha]_{k}[\beta k-\alpha\beta J_{n}}{k!}(\frac{c}{(z-b)^{\beta}})^{k}$ $(n \in Z_{0}^{+}, \frac{c}{(z-b)^{\beta}} <1)$, (10)

20 where $[\lambda]_{k}=\lambda(\lambda+1)\cdots(\lambda+k-1)=\gamma(\lambda+k)/\gamma(\lambda)$ with $[\lambda]_{0}=1,$ (Pochhammer s Notation). 2 $N$ -Fractional Calculus of the Ehnctions $f(z)=$ $((z-b)^{2}-c)^{1}\s$ In order to have a representation of -fractional calculus with $\gamma$-order, $N$ directly apply the theorem to the function at the beginning. we Theorem 1. Let we have $f=f(z)=((z-b)^{2}-c)^{a}\theta (((z-b)^{2}-c)^{1}s\neq 0)$ (1) $(f)_{\gamma}=e^{-i\pi\gamma}(z-b)^{-\tau^{-\gamma}}2 \sum_{k=0}^{\infty}\frac{[-i5]_{k}\gamma(2k_{5}^{2}-+\gamma)}{k!\gamma(2k-\frac{2}{3})}(\frac{c}{(z-b)^{2}})^{ }$ (2) Proof. According to Theorem $D$, we have the equation (1) directly. Secondly, we consider the function as a product of two functions like as $f(z)=((z-b)^{2}-c)^{-}f\cdot((z-b)^{2}-c)2$ and we have the new representation for $(f)_{\gamma}$ as follows. Theorem 2. We set $f=f(z)$, and $S,$ $K,J$ as follows, $S=S(z)= \frac{c}{(z-b)^{2}}, ( S <1)$ (3) $K(k, \gamma,r/\iota)=\frac{[\frac{2}{3}]_{k}\gamma(2k+\frac{4}{3}+\gamma-m)}{k!\gamma(2k+\frac{4}{3})}s^{k}$, (4) We have $J( \gamma.m)=\sum_{k=0}k(k,\gamma_{;}m)\infty$. (5) $(f)_{\gamma} = e^{-i\pi\gamma}(z-b)^{-s_{-\gamma+2}}3\{(1-s)j(\gamma,0)-2\gammaj(\gamma, 1)$ $+\gamma(\gamma-1)j(\gamma,2)\}$ (6)

21 Proof. According to Lemma (iv), we have $(f)_{\gamma}=(((z-b)^{2}-c)^{-\frac{2}{\theta}}\cdot((z-b)^{2}-c))_{\gamma}$ (7) $= \sum_{k=0}^{\infty}\frac{r(\gamma+1)}{k!\gamma(\gamma+1-k)}(((z-b)^{2}-c)^{-\s})_{\gamma-k}\cdot((z-b)^{2}-c)_{k}$ (8) and applying Theorem $D.(i)$ to $(((z-b)^{2}-c)^{-\frac{2}{3}})_{\gamma-k}$, (9) we obtain $(f)_{\gamma}= \frac{\gamma(\gamma+1)}{\gamma(\gamma+1)}(((z-b)^{2}-c)^{-l}3)_{\gamma}((z-b)^{2}-c)_{0}$ $+ \frac{\gamma(\gamma+1)}{\gamma(\gamma)}(((z-b)^{2}-c)^{-\frac{2}{a}})_{\gamma-1}(2(z-b))$ $+ \frac{\gamma(\gamma+1)}{2 \Gamma(\gamma-1)}(((z-b)^{2}-c)^{-\frac{2}{3}})_{\gamma-2}\cdot 2$ $=(((z-b)^{2}-c)^{-\frac{2}{s}})_{\gamma}((z-b)^{2}-c)+2\gamma(((z-b)^{2}-c)^{-g}3)_{\gamma-i}\cdot(z-b)$ $+2\gamma(\gamma-1)(((z-b)^{2}-c)^{-\frac{2}{\theta}})_{\gamma-2}$ $=e^{-i\pi\gamma}(z-b)^{-a^{-\gamma}}((z-b)^{2}-c) \sum_{k=0}^{\infty}\frac{[_{\tilde{3}}]_{k}\gamma(2k+5+\gamma)}{k!\gamma(2k+\frac{4}{3})}4(\frac{c}{(z-b)^{2}})^{k}$ $+2 \gamma(z-b)e^{-i\pi(\gamma-1)}(z-b)^{-\frac{4}{s}-\gamma+2}\sum_{k=0}^{\infty}\frac{[\frac{2}{3}]_{k}\gamma(2k+\frac{4}{3}+\gamma-1)}{k!\gamma(2k+\frac{4}{3})}(\frac{c}{(z-b)^{2}})^{k}$ $+2 \gamma(\gamma-1)e^{-i\pi(\gamma-2)}(z-b)^{-4-\gamma+2}3\sum_{k=0}^{x}\frac{\{\frac{2}{3}]_{k}\gamma(2k+\frac{4}{3}+\gamma-2)}{k!\gamma(2k+4s)}(\frac{c}{(z-b)^{2}})^{k}$ Then we have the representation (10) $(f(z))_{\gamma}=e^{-i\pi\gamma}(z-b)^{-\frac{4}{\theta}-\gamma+2}\{(1-s)j(\gamma_{)}0)-2\gamma.i(\gamma, 1)+2\gamma(\gamma-1)J(\gamma, 2)\}.$ (11) This is the same one as the equation (6). Next, we consider the function as another product form like as $f(z)=((z-b)^{2}-c\rangle^{-\frac{6}{a}}\cdot((z-b)^{2}-c)^{2}$

22 and we have the new representation for $(f)_{\gamma}$ as follows. Theorem 3. We set $f=f(z)$, and $S,$ $H,G$ as follows, $S=S(z)= \frac{c}{(z-b)^{2}},$ $( S <1)$ (12) $H(k, \gamma,m)=\frac{[\s]_{k}\gamma(2k+1\tau 0+\gamma-m)}{k!\Gamma(2k+1T0)}S^{k}$, (13) We have $G( \gamma,m)=\sum_{k=0}^{x}h(k,\gamma, m)$. (14) $(f)_{\gamma}$ $=$ $e^{-1\pi\gamma}(z-b)^{-*^{1}-\gamma+4}\{(1-s)^{2}g(\gamma, 0)-4\gamma(1-S)G(\gamma, 1)$ $+$ $1$ 6$\gamma$( ) $(1- \frac{1}{3}s)g(\gamma, 2)$ $-4\gamma(\gamma-1)(\gamma-2)G(\gamma_{i}3)+\gamma(\gamma-1)(\gamma-2)(\gamma-3)G(\gamma,4)\}$ (15) Proof. According to Lemma (iv), we have $(f)_{\gamma}=(((z-b)^{2^{5}}-c)^{-}w.$ $(((z-b)^{2}-c)^{2}))_{\gamma}$ (16) $= \sum_{k=0}^{\infty}\frac{\gamma(\gamma+1)}{k!\gamma(\gamma+1-k)}(((z-b)^{2}-c)^{-a}3)_{\gamma-k}\cdot(((z-b)^{2}-c)^{2})_{k}$ (17) and applying Theorem $D.(i)$ to $(((z-b)^{2}-c)^{-a}a)_{\gamma-k}$, (18) we obtain $(f)_{\gamma}= \frac{\gamma(\gamma+1)}{\gamma(\gamma+1)}(((z-b)^{2}-c)^{-\frac{b}{3}})_{\gamma}(((z-b)^{2}-c)^{2})_{0}$ $+ \frac{\gamma(\gamma+1)}{\gamma(\gamma)}(((z-b)^{2}-c)^{-\s})_{\gamma-1}(4((z-b)^{2}-c)(z-b))$ $+ \frac{\gamma(\gamma+1)}{2!\gamma(\gamma-1)}(((z-b)^{2}-c)^{-\s})_{\gamma-2}\cdot(12(z-b)^{2}-4c)$ $+ \frac{\gamma(\gamma+1)}{3!\gamma(\gamma-2)}(((z-b)^{2}-c)^{-\s})_{\gamma-3}\cdot(24(z-b))$ $+ \frac{\gamma(\gamma+1)}{4!\gamma(\gamma-3)}(((z-b)^{2}-c)^{-g}a)_{\gamma-4}\cdot 24$

23 Then we have the representation $(f(z))_{\gamma}$ $=$ $e^{-i\pi\gamma}(z-b)^{-\frac{i0}{s}-\gamma+4} \{(1-S)^{2}G(\gamma, 0)-4\gamma(1-S)G(\gamma,\cdot 1)+6\gamma(\gamma-1)(1-\frac{1}{3}S)G(\gamma, 2)$ $-4\gamma(\gamma-1)(\gamma-2)G(\gamma,3)+\gamma(\gamma-1)(\gamma-2)(\gamma-3)G(\gamma,4)\}$ (20) This is the same one as the equation (15). Next, we choose another process of the fractional calculus which is devided into two stages as like as We have an another result. $(f(z))_{\gamma}=((f(z))_{1})_{\gamma-1}$. (21) Theorem 4. We set $f=f(z)$, and $S,$ $R,W$ as follows, $S=S(z)= \frac{c}{(z-b)^{2}},$ $( S <i)$ (22) $R(k, \gamma, m)=\frac{[^{2}]_{k}\gamma(2k+4+\gamma-m)}{k!\gamma(2k+^{4}5)}s^{k}$, (23)

24 $W( \gamma_{l}.m)=\sum_{k=0}^{\infty}r(k,\gamma, m)$. (24) Then we have $(f)_{\gamma}= \frac{2}{3}e^{-\pi\gamma}(z-b)^{-\frac{4}{3}-\gamma+2}\{-w(\gamma,\cdot 1)-(\gamma-1)W(\gamma, 2)\}$. (25) Proof. We have $(((z-b)^{2}-c)^{\frac{1}{3}})_{1} = \frac{1}{3}((z-b)^{2}-c)^{-\frac{2}{3}}\cdot 2(z-b)$ $= \frac{2}{3}((z-b)^{2}-c)^{-\frac{2}{a}}(z-b)$ (26) Then $((((z-b)^{2}-c)^{\frac{1}{3}}))_{1})_{\gamma-i}= \frac{2}{3}(((z-b)^{2}-c)^{-\frac{}{s}}(z-b))_{\gamma-1}$ $= \frac{2}{3}\sum_{k=0}^{\infty}\frac{\gamma(\gamma)}{k!\gamma(\gamma-k)}(((z-b)^{2}-c)^{-\frac{2}{a}})_{\gamma-1-k}(z-b)_{k}$ $= \frac{2}{3}t\frac{\gamma(\gamma)}{\gamma(\gamma)}(((z-b)^{2}-c)^{-2}\delta)_{\gamma-1}(z-b)+\frac{\gamma(\gamma)}{\gamma(\gamma-1)}(((z-b)^{2}-c)^{-\s})_{\gamma-1-1}\}$ $= \frac{2}{3}\{e^{-i\pi(\gamma-1)}(z-b)^{-\s-\gamma+2}\sum_{\kappa 0}^{\infty}\frac{[_{B5}^{24}]_{k}\Gamma(2k++\gamma-1)}{k!\Gamma(2k+45)}(\frac{c}{(z-b)^{2}})^{k}$ $+( \gamma-1)e^{-i\pi(\gamma-2)}(z-b)^{-4_{\neg+2}}\theta\sum_{k=0}^{\infty}\frac{[\frac{2}{3}]_{k}\gamma(2k+\frac{4}{3}+\gamma-2)}{k!\gamma(2k+4\epsilon)}(\frac{c}{(z-b)^{2}})^{k}\re 7)$ And we put $R(k, \gamma, m)=\frac{[^{2}]_{k}\gamma(2k+4+\gamma-m)}{k!\gamma(2k+4a)}(\frac{c}{(z-b)^{2}})^{k}$ $W( \gamma,\cdot m)=\sum_{k=0}^{\infty}r(k,\gamma,m)$. So we have $(f(z))_{\gamma}= \frac{2}{3}e^{-i\pi\gamma}(z-b)^{-\tau^{-\gamma+2}}\{-w(\gamma, 1)4+(\gamma-1)W(\gamma,2)\},$ $(\gamma\not\in Z^{-})$. (28) We have the equation (25) from above equation directly.

25 3 Identities We have four kinds of representation on -fractional calculus of the function $N$ $f(z)=((z-b)^{2}-c)^{-}\overline{3}$ like as Theorem 1, 2,3 and 4. Accordingly we have the following identities with using and $J$ $G$ and $W$ and given in \S 2. $L$ Theorem 5. We have (i) $\sum_{k=0}^{\infty}\frac{[\frac{1}{3}]_{k}\gamma(2k_{5}^{2}-+\gamma)}{k!\gamma(2k_{5}^{2}-)}s^{k}=(1-s)j(\gamma,0)-2\gamma J(\gamma, i)+2\gamma(\gamma-1)j(\gamma,2)$, $(\gamma\not\in Z^{-})$ md (1) (ii) $\sum_{k=0}^{\infty}\frac{[_{f}^{1}]_{k}\gamma(2k_{3}^{2}-+\gamma)}{k!\gamma(2k-\frac{2}{3})}s^{k}=(1-s)^{2}g(\gamma,0)-4\gamma(1-s)g(\gamma, 1)$ $+6 \gamma(\gamma-1)(1-\frac{1}{3}s)g(\gamma, 2)-4\gamma(\gamma-1)(\gamma-2)G(\gamma_{\dot{l}}3)$ $+\gamma(\gamma-1)(\gamma-2)(\gamma-3)g(\gamma,4)$, $(\gamma\not\in Z^{-})$ (2) (iii) $\sum_{k=0}^{\infty}\frac{[_{\theta}^{i}]_{k}\gamma(2k_{\delta}^{2}-+\gamma)}{k!\gamma(2k-\frac{2}{\theta})}s^{k}=\frac{2}{3}\{-l(\gamma, 1)+(\gamma-1)L(\gamma, 2)\}.$ $(\gamma\not\in Z^{-})$ (3) Proof. directly. From Theorems 2 and 3 and 4 we can obtain above equations 4 A Special Case In order to make sure of the formuiations of Theorem 1, 2, 3 and 4, we consider the case of the integer $\gamma=1.$ From Theorem 1, in case of the equation becomes $\gamma=1$ $(f)_{1}=e^{-i\pi}(z-b)^{-\frac{1}{{\}}} \sum_{k=0}^{\infty}\frac{[-\frac{1}{3}]_{k}\gamma(2k-\frac{2}{3}+1)}{k!r(2k-\frac{2}{\theta})}s^{k}$

26 $=e^{-\tilde{\iota}\pi}(z-b)^{g}- l\{2\sum_{k=0}^{\infty}\frac{[-\s_{k}k}{k}!s^{k}-\frac{2}{3}\sum_{k=0}^{\infty}\frac{[-3k1k}{k}!s^{k}\}$ $=e^{-i\pi}(z-b)^{-\frac{1}{3}} \{2S(-\frac{1}{3})\sum_{k=0}^{3}^{\infty}[\frac{2]_{k}}{k!}S^{k}-\frac{2}{3}\sum_{k=0}^{x}\frac{[-\frac{i}{3}kk}{k}!S^{k}\}$ $=e^{-i\pi}(z-b)^{-g} \{2S(-\frac{1}{3})(1-S)^{-\S}-\frac{2}{3}(1-S)^{1}\S\}$ $=(-1)(z-b)^{-\S}(- \frac{2}{3})(1-s)^{-\s}$ $= \frac{2}{3}(z-b)-1s(1-s)^{-\frac{2}{{\}}}$ (1) When $\gamma=i$, from Theorem 2, we have $(f)_{1}=e^{-i\pi}(z-b)^{-\s}\{(11-s)j(1,0)-2j(1,1)\}$ $=(-1)(z-b)^{-\#} \{(1-S)\sum_{k=0}^{\infty}\frac{[^{2}]_{k}\Gamma(2k+^{4}+1)}{k!\Gamma(2k+\frac{4}{3})}S$ $-2 \sum_{k=0}^{\infty}\frac{[\frac{2}{3} _{k}\gamma(2k+^{4}5)}{k!\gamma(2k+\frac{4}{3})}s^{k}\}$ And we notice following relations, (2) $\sum_{k=0}^{\infty}\frac{[\lambda]_{k}}{k!}z^{k}=(1-z)^{-\lambda}$ (3) $\sum_{k=0}^{\infty}\frac{[\lambda]_{k}k}{k!}t$ $=$ $\sum_{k=0}^{\infty}\frac{[\lambda]_{k}}{(k-1)!}t^{k}=\sum_{k=0}^{x}\frac{[\lambda _{k+1}}{k!}t^{k+1}$ $= \lambda T\sum_{k=0}^{\infty}\frac{[\lambda+1]_{k}}{k!}T^{k}=\lambda T(1-T)^{-1-\lambda}$ (4) $[ \lambda]_{k+1}=\frac{\gamma(\lambda+1+k)}{\gamma(\lambda)}=\lambda[\lambda+1]_{k}$ (5) Then, we have the $fo\mathbb{i}$owing relations with applying to the above euations. $(f)_{1}=-(z-b)^{-q}1 \{2S(1-S)\sum_{k=0}^{\infty}\frac{[_{5}^{2}]_{k+1}}{k!}S^{k}+\frac{4}{3}(1-S)\sum_{k=0}^{\infty}\frac{[\frac{2}{3}]_{k}}{k!}S^{k}\}-2\sum_{k=0}^{\infty}\frac{[\frac{2}{3}]_{k}}{k!}S^{k}\}$ $=-(z-b)^{-1}3 \{2(1-S)S(\frac{2}{3})\sum_{k=0}^{\infty}\frac{1\frac{5}{3}]_{k}}{k!}S^{k}+\frac{4}{3}(1-S)(1-S)^{-\S}-2(1-S)^{-\frac{2}{l}}\}$

27 2 $=-(z-b)^{-} z1\{\frac{4}{3}(1-s)s(1-s)^{-\s}+\frac{4}{3}(1-s)(1-s)^{-2}f-2(1-s)^{-}\s\}$ $=-(z-b)^{-}5(1-s)^{-\epsilon}( \frac{4}{3}s+\frac{4}{3}-\frac{4}{3}s-2)12$ $= \frac{2}{3}(z-b)$ (1 $S$) (6) And from Theorem 3, we have Next, frpm Theorem 4 we have $(f)_{1}= \frac{2}{3}(-1)(z-b)^{-}f^{+1}\{-l(1,1)\}4$ $= \frac{2}{3}(z-b)^{-}sl(1,1)\iota$ $= \frac{2}{3}(z-b)^{-1}3\sum_{k=0}^{\infty}\frac{[_{53}^{24}]_{k}\gamma(2k+)}{k!\gamma(2k+\frac{4}{3})}(\frac{c}{(z-b)^{2}})^{k}$ $= \frac{2}{3}(z-b)^{-\s}\sum_{k=0}^{\infty}\frac{[_{\check{3}}^{2}]_{k}}{k!}1(\frac{c}{(z-b)^{2}})^{k}$ $= \frac{2}{3}(z-b)^{-}\tau 1(1-\frac{c}{(z-b)^{2}})^{-\frac{2}{\theta}}$ $= \frac{2}{3}(z-b)((z-b)^{2{\}}-c)^{-2}$ (8)

28 Therefore we have the same results from four different forms of $N$fractiona$J$ calculus for the function $((z-b)^{2}-c)^{\iota}a.$ Now these results are consistent with the one of the classical calculus of $\frac{d}{dz}((z-b)^{2_{-c)^{\tau}}^{1}}.$ (9) Here we confirm again the result for Theorem 1. When $\gamma=1$, from Theorem 1.(2), we have $(((z-b)^{2}-c)^{1} \S)_{1}=-(z-b)^{-\frac{1}{3}}\sum_{k=0}^{\infty}\frac{[-15]_{k}\Gamma(2k-\frac{2}{3}+\gamma)}{k!\Gamma(2k_{F}^{2}-)}S^{k}$ $=-(z-b)^{-z}1 \{2\sum_{k=0}^{\infty}\frac{\iota_{-\frac{1}{3}k}k}{k}!S^{k}-\frac{2}{3}\sum_{k=0}^{\infty}\frac{[-\frac{1}{3}]_{k}}{k!}S^{k}\}$ $=-(z-b)-1 \epsilon\{2s(-\frac{1}{3})\sum_{k=0}^{\infty}\frac{[_{5}^{2}]_{k}}{k!}s^{k}-\frac{2}{3}\sum_{k=0}^{\infty}\frac{[-\frac{1}{3}]_{k}}{k!}s^{k}\}$ $=-(z-b)^{-1}3 \{-\frac{2}{3}s(1-s)^{-\frac{2}{\theta}}-\frac{2}{3}(1-s)^{\iota}3\}$ $=-(z-b)^{-\frac{1}{3}}(1-s)^{-\frac{2}{\theta}} \{-\frac{2}{3}s-\frac{2}{3}(1-s)\}$ 1 2 $=-(z-b)^{-}\overline{3}(-)(1-s)^{-2}\overline{3}s$ $= \frac{2}{3}(z-b)^{-;}(1-s)^{-\epsilon}2$ (10) We have $\frac{2}{3}(z-b)^{-1}a(1-s)^{-\frac{2}{s}}=\frac{2}{3}(z-b)^{- }(\frac{(z-b)^{2}-c)}{(z-b)^{2}})^{-a}$ $= \frac{2}{3}(z-b)((z-b)^{2}-c)^{-\s}$. (11) This result also coincides with the one cbtained by the classical calculus. So we conclude that according to the definition of fractional differintegration, we have three forms for $\gamma$-th differintegrate of the function $((z-b)^{2}-c)^{1}\tau$ by Theorems 1, 2, 3 and 4. We made sure that they have the same results as the classical result when the differential order is in the case of $\gamma=1.$

Vol. 29 References [1] K. Nishimoto; Ffsctional Calculus, Vol. 1 (1984), Vol. 2 (1987), Vol. 3 (1989), Vol. 4 (1991) 5, (1996), $\}$ Descartes Press, Koriyama, Japan. [2] K. Nishimoto ; An Essence of Nishimnoto s FractionaI Calculus (Calculus of the 21st Century); $h_{1}teg_{1}\cdot als$ and Differentiatious of Arbitraty Order (1991), Descartes Press, Koriyama, Japan. [3] K. Nishimoto; On Nishimoto s fractional calculus operator $N^{\nu}$ (On an action group), J. Rac. Calc. Vol. 4, Nov. (1993), 1-11. [4] K. Nishimoto; Ring and Field Produced from The Set of Fractional $N$- $arrow 36.$ Calculus Operator, J. Frac Calc. Vol. 24, Nov. (2003),29 [5] K. Nishimoto; $N$ - $F$)ractional Calculus of Products of Some Power Functions, J. FYac. Calc. Vol. 27, May (2005), 83-88. [6] K. Nishimoto; $N-\mathbb{R}$actional Calculus of Some Composite Functions, J. Frac. Calc. Vol. 29, May (2006), 35-44. [7] K. Nishimoto ; $N$-Fractional Calculus of Some Composite Algebraic Functions, J. Rac. Calc. Vol. 31, May (2007), 11-23. [8] K. Nishimoto and T. Miyakoda; $N$ -Fractional Calculus and n-th Derivatives of Some Algebraic Functions, J. Frac. Calc. Vol. 31, May (2007), 53-62. [9] T. Miyakoda ; $N$-Fractional Calculus of Certain Algebraic Functions, J. Frac. Calc. Vol. 31, May (2007), 63-76. [10] K. Nishimoto and T. Miyakoda ; - $N$-Fractional Calculus of Some Mu$I$ tiple Power Functions and Some Identities, J. Frac. Calc. Vol. 34, Nov. (2008), 11-22. Tsuyako Miyakoda Kansai Medical University, Lab. of Mathematics Hirakata 573- i136, Osaka