1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな

Size: px
Start display at page:

Download "1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな"

Transcription

1 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 治 医 の 観 症 例 治 医 の 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のない要約知識 直感 知識 直感 総合的評価 考察 総合的評価 考察 単変量解析の場合 多変量解析の場合 < 表 1.1 脂質異常症患者の TC と TG と重症度 > 症例 No. TC TG 重症度

2 多変量データまたは多特性データ お互いに関連のある多種類のデータ 人間は多くの機能が複雑に絡み合った有機システム 医学 薬学分野で用いられるデータは人間から得られるものが多い 本質的に多変量データまたは多特性データと考えられる 単変量解析 1 種類のデータ または原因も結果も 1 種類のデータを要約するための手法例 : 平均値の推定と検定 相関係数 回帰直線等 多変量解析 多変量データまたは多特性データを総合的に要約するための手法例 : 重回帰分析 判別分析 ロジスティック回帰分析等 < 多変量解析の特徴 > 多種類のデータを数学に基づいて総合的に要約するため 結果に主観が入りにくい 理論が複雑で理解しにくい 結果が複雑で解釈しにくい 信頼性の高い結果を得るためには例数が沢山必要 データの質を敏感に反映する GIGO( ガイゴウ ):garbage in garbage out( ゴミを入れればゴミが出る!) 多変量解析は単変量解析では得られないような素晴らしい結果を得るためのものではなく単変量解析で良い結果が得られている時にそれらの結果を客観的に要約するための手法 1-2

3 1.2 多変量データの要約と多変量解析 概括評価項目は多変量データをカンピュータで総合した要約値の一種 x z 1 軸 225 TG 200 (250,200) z TC x z 1 3 z 3 軸図 1.1 TC と TG の散布図 概括評価項目 表 1.1 の重症度は 総コレステロール (TC) とトリグリセリド (TG) の持つ情報を主治医が要約して 概括評価したもので 平均値と同じような要約値の一種 < 概括評価項目の作り方 > (1) 各項目の平均値または合計 重症度相当の概括評価項目 TC+ TG 平均値 :z 1 = =0.5TC+ 0.5TG 2 図 1.1 で z 1 軸つまり 45 度の傾きを持つ直線 x 2 =x 1 に各プロットから垂線を下し 原点 からその点までの距離を 2 で割った値になる 例 : 表 1.1 の No.5 のデータ : z 1 = =225= 合計 : z 1 =TC+ TG=1TC+ 1TG 1-3

4 図 1.1 で z 1 軸つまり 45 度の傾きを持つ直線 x 2 =x 1 に各プロットから垂線を下し 原点 からその点までの距離に 2 を掛けた値になる 例 : 表 1.1 の No.5 のデータ : z 1 = =450= 図 1.1 の z 1 軸と z 3 軸は目盛の間隔が x 1 軸や x 2 軸の 2 倍になる そこで z 1 の長さを 2 で割ると x 1 軸や x 2 軸と同じ単位になる したがって z 1 は本質的には平均値と考えることができる (2) 各項目の重み付け合計 項目の重要度を考慮した重症度相当の概括評価項目 z 2 =1TC+ 0.5TG 例 : 表 1.1 の No.5 のデータ :z 2 = =350 (3) 各項目の差または符号付き合計 タイプまたはプロフィールを表す概括評価項目 z 3 =TC TG=1TC+ ( 1)TG 図 1.1 で z 3 軸つまり -45 度の傾きを持つ直線 x 2 =-x 1 に各プロットから垂線を下し 原 点からその点までの距離に 2 を掛けた値になる 例 : 表 1.1 の No.5 のデータ : z 3 = =50= z 3 : 正で絶対値が大きい TC 型 (IIa 型 ) z 3 : 絶対値が小さい 中間型 (IIb 型 ) z 3 : 負で絶対値が大きい TG 型 (IV 型 ) 人間が判定した概括評価項目も 概括評価項目に相当する検査項目も 近似的に y=b 0 +b 1 x 1 + +b p x p という形式で表すことができる この係数 b 0 ~ b p を人間はカンピュータで決め 自然は科学法則によって決めている 多変量解析はこの係数 b 0 ~ b p を数学的に推測するための手法 1-4

5 1.3 多変量解析の分類 多変量解析は外的基準の有無によって 2 種類に大別できる 外的基準がある場合 多変量解析 予測 判別の問題 概括評価基準の分析 重回帰分析 判別分析 ロジスティック回帰分析等 医学 薬学分野向きの手法 外的基準がない場合 データの内部構造の分析 概括評価基準の設定 主成分分析 クラスター分析等 心理学 社会学分野向きの手法 内的基準 説明変数 ( 独立変数 )= 原因項目 表 1.1 の TC と TG 外的基準( 基準変数 ) 目的変数 ( 従属変数 )= 結果項目 表 1.1 の重症度 潜在変数 直接観測可能ではなく 色々なデータの変動パターンを通して間接的に推測される 変数 原因にも結果にもなる < 多変量解析手法の分類 > 手法名 目的変数説明変数潜在変数名義尺度計量尺度名義尺度計量尺度名義尺度計量尺度 重回帰分析 多数 - - 共分散分析 - 1 多数 多数 - - 分散分析 - 1 多数 数量化 I 類 - 1 多数 正準相関分析 - 多数 - 多数 - - 判別分析 多数 - - ロジスティック回帰分析 多数 - - 数量化 II 類 1 - 多数 生存時間解析 多変 - - 主成分分析 多数 - - 因子分析 - 多数 多数 数量化 III 類 - - 多数 - - ( 多数 ) クラスター分析 多数 多数 - 数量化 IV 類 - - 多数 - 多数 - 1-5

6 クラスター分析 主成分分析 数量化 III 類 1 0 基準変数が 名義尺度の潜在変数 説明変数が名義尺度の時 基準変数がない時因子分析正準相関分析重回帰分析 説明変数が 潜在変数の時 説明変数が名義尺度の時 0 1 分散分析共分散分析数量化 I 類 数量化 III 類 基準変数が名義尺度の時 基準変数が名義尺度の時 判別分析ロジスティック回帰分析 0 1 基準変数も名義尺度の時 数量化 II 類 説明変数も名義尺度の時 0 図 1.2 各種多変量解析手法の関係

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

スライド 1

スライド 1 都市環境計画 都市環境計画のための 調査 分析 調査 分析手法の概論分析 ( 主に多変量解析 ) の概論 試験想定問題 多変量解析手法について以下のキーワードを用いて説明せよ 定量データ ( 量的データ ), 定性データ ( 質的データ ) 目的変数 ( 従属変数 ), 説明変数 ( 独立変数 ), 重回帰分析, 判別分析, 因子分析, 数量化 Ⅰ 類, 数量化 Ⅱ 類, 数量化 Ⅲ 類 利用者の利用実態や評価構造の解明等に関する研究

More information

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt 重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?

More information

当し 図 6. のように 2 分類 ( 疾患の有無 ) のデータを直線の代わりにシグモイド曲線 (S 字状曲線 ) で回帰する手法である ちなみに 直線で回帰する手法はコクラン アーミテージの傾向検定 疾患の確率 x : リスクファクター 図 6. ロジスティック曲線と回帰直線 疾患が発

当し 図 6. のように 2 分類 ( 疾患の有無 ) のデータを直線の代わりにシグモイド曲線 (S 字状曲線 ) で回帰する手法である ちなみに 直線で回帰する手法はコクラン アーミテージの傾向検定 疾患の確率 x : リスクファクター 図 6. ロジスティック曲線と回帰直線 疾患が発 6.. ロジスティック回帰分析 6. ロジスティック回帰分析の原理 ロジスティック回帰分析は判別分析を前向きデータ用にした手法 () ロジスティックモデル 疾患が発症するかどうかをリスクファクターから予想したいまたは疾患のリスクファクターを検討したい 判別分析は後ろ向きデータ用だから前向きデータ用にする必要がある ロジスティック回帰分析を適用ロジスティック回帰分析 ( ロジット回帰分析 ) は 判別分析をロジスティック曲線によって前向き研究から得られたデータ用にした手法

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

Microsoft PowerPoint - データ解析発表2用パワポ

Microsoft PowerPoint - データ解析発表2用パワポ 7/3 教育学研究科 M1 藤田弥世 SEM とは structural equation model の略 ; 構造方程式モデル ( 別名. 共分散構造分析 ) 多変量解析の色々な手法を統合したモデル 相関行列や共分散行列を利用して 多くの変数間の関係を総合的に分析する手法 共分散 ( 相関係数 ) の観点から 相関係数で関連の大小を評価することができるデータすべてに適用可能 パス解析との違い 前回の授業の修正点

More information

8 A B B B B B B B B B 175

8 A B B B B B B B B B 175 4.. 共分散分析 4.1 共分散分析の原理 共分散分析は共変数の影響を取り除いて平均値を比較する手法 (1) 共分散分析 あるデータを群間比較したい そのデータに影響を与える他のデータが存在する 他のデータの影響を取り除いて元のデータを比較したい 共分散分析を適用 共分散分析 (ANCOVA:analysis of covariance アンコバ ) は分散分析に回帰分析の原理を応 用し 他のデータの影響を考慮して目的のデータを総合的に群間比較する手法

More information

因子分析

因子分析 因子分析 心理データ解析演習 M1 枡田恵 2013.6.5. 1 因子分析とは 因子分析とは ある観測された変数 ( 質問項目への回答など ) が どのような潜在的な変数 ( 観測されない 仮定された変数 ) から影響を受けているかを探る手法 多変量解析の手法の一つ 複数の変数の関係性をもとにした構造を探る際によく用いられる 2 因子分析とは 探索的因子分析 - 多くの観測変数間に見られる複雑な相関関係が

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

主成分分析 -因子分析との比較-

主成分分析 -因子分析との比較- 主成分分析 - 因子分析との比較 - 2013.7.10. 心理データ解析演習 M1 枡田恵 主成分分析とは 主成分分析は 多変量データに共通な成分を探って 一種の合成変数 ( 主成分 ) を作り出すもの * 主成分はデータを新しい視点でみるための新しい軸 主成分分析の目的 : 情報を縮約すること ( データを合成変数 ( 主成分 ) に総合化 ) 因子分析の目的 : 共通因子を見つけること ( データを潜在因子に分解

More information

Microsoft PowerPoint - A1.ppt [互換モード]

Microsoft PowerPoint - A1.ppt [互換モード] 011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)

More information

Microsoft PowerPoint - 統計科学研究所_R_主成分分析.ppt

Microsoft PowerPoint - 統計科学研究所_R_主成分分析.ppt 主成分分析 1 内容 主成分分析 主成分分析について 成績データの解析 R で主成分分析 相関行列による主成分分析 寄与率 累積寄与率 因子負荷量 主成分得点 2 主成分分析 3 次元の縮小と主成分分析 主成分分析 次元の縮小に関する手法 次元の縮小 国語 数学 理科 社会 英語の総合点 5 次元データから1 次元データへの縮約 体形評価 : BMI (Body Mass Index) 判定肥満度の判定方法の1つで

More information

Chapter 1 Epidemiological Terminology

Chapter 1 Epidemiological Terminology Appendix Real examples of statistical analysis 検定 偶然を超えた差なら有意差という P

More information

13章 回帰分析

13章 回帰分析 単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい

More information

Microsoft Word - mstattext02.docx

Microsoft Word - mstattext02.docx 章重回帰分析 複数の変数で 1つの変数を予測するような手法を 重回帰分析 といいます 前の巻でところで述べた回帰分析は 1つの説明変数で目的変数を予測 ( 説明 ) する手法でしたが この説明変数が複数個になったと考えればよいでしょう 重回帰分析はこの予測式を与える分析手法です 以下の例を見て下さい 例 以下のデータ (Samples 重回帰分析 1.txt) をもとに体重を身長と胸囲の1 次関数で

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

本日の内容 相関関係散布図 相関係数偏相関係数順位相関係数 単回帰分析 対数目盛 2

本日の内容 相関関係散布図 相関係数偏相関係数順位相関係数 単回帰分析 対数目盛 2 2 群の関係を把握する方法 ( 相関分析 単回帰分析 ) 2018 年 10 月 2, 4 日データサイエンス研究所伊藤嘉朗 本日の内容 相関関係散布図 相関係数偏相関係数順位相関係数 単回帰分析 対数目盛 2 相関分析 ( 散布図 ) セールスマンの訪問回数と売上高 訪問回数 売上高 38 523 25 384 73 758 82 813 43 492 66 678 38 495 29 418 71

More information

Microsoft PowerPoint - R-stat-intro_04.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_04.ppt [互換モード] R で統計解析入門 (4) 散布図と回帰直線と相関係数 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. の場所に移動し, データを読み込む 4. データ DEP から薬剤

More information

回帰分析の用途・実験計画法の意義・グラフィカルモデリングの活用 | 永田 靖教授(早稲田大学)

回帰分析の用途・実験計画法の意義・グラフィカルモデリングの活用 | 永田 靖教授(早稲田大学) 回帰分析の用途 実験計画法の意義 グラフィカルモデリングの活用 早稲田大学創造理工学部 経営システム工学科 永田靖, The Institute of JUSE. All Rights Reserved. 内容. 回帰分析の結果の解釈の仕方. 回帰分析による要因効果の把握の困難さ. 実験計画法の意義 4. グラフィカルモデリング 参考文献 : 統計的品質管理 ( 永田靖, 朝倉書店,9) 入門実験計画法

More information

主成分分析 + 重回帰分析 a.2 変数群に対して, 以下のような手順を実行 ( 多変数群 ) では,2 変数群を組み合わせて実行 ) 説明変数群の主成分分析 2 基準変数群の主成分分析 3 説明変数群における 個の主成分得点に対して, 基準へ数群における主成分得点のすべてを用いて重回帰分析を反復

主成分分析 + 重回帰分析 a.2 変数群に対して, 以下のような手順を実行 ( 多変数群 ) では,2 変数群を組み合わせて実行 ) 説明変数群の主成分分析 2 基準変数群の主成分分析 3 説明変数群における 個の主成分得点に対して, 基準へ数群における主成分得点のすべてを用いて重回帰分析を反復 正準相関分析についての解説 0. 判別分析 (discriminant analysis) 多変量のデータを用い, 重みづけた説明変数 ( 独立変数 ) を合成して, 個々人の所属する集団を分ける基準変数 ( 従属変数 ) を予測 ( 判別 ) する多変量解析法を, 判別分析と総称する. 例 : ある患者に対する多種類の検査結果を総合して ( 説明変数 ), どのような病気かを診断する ( 基準変数

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

MedicalStatisticsForAll.indd

MedicalStatisticsForAll.indd みんなの 医療統計 12 基礎理論と EZR を完全マスター! Ayumi SHINTANI はじめに EZR EZR iii EZR 2016 2 iv CONTENTS はじめに... ⅲ EZR をインストールしよう... 1 EZR 1...1 EZR 2...3...8 R Console...10 1 日目 記述統計量...11 平均値と中央値... 11...12...15...18

More information

簿記教育における習熟度別クラス編成 簿記教育における習熟度別クラス編成 濱田峰子 要旨 近年 学生の多様化に伴い きめ細やかな個別対応や対話型授業が可能な少人数の習熟度別クラス編成の重要性が増している そのため 本学では入学時にプレイスメントテストを実施し 国語 数学 英語の 3 教科については習熟

簿記教育における習熟度別クラス編成 簿記教育における習熟度別クラス編成 濱田峰子 要旨 近年 学生の多様化に伴い きめ細やかな個別対応や対話型授業が可能な少人数の習熟度別クラス編成の重要性が増している そのため 本学では入学時にプレイスメントテストを実施し 国語 数学 英語の 3 教科については習熟 濱田峰子 要旨 近年 学生の多様化に伴い きめ細やかな個別対応や対話型授業が可能な少人数の習熟度別クラス編成の重要性が増している そのため 本学では入学時にプレイスメントテストを実施し 国語 数学 英語の 3 教科については習熟度別クラス編成を実施している 本稿では さらにの導入へ向けて 既存のプレイスメントテストを活用したクラス編成の可能性について検討した 3 教科に関するプレイスメントテストの偏差値を説明変数

More information

観測変数 1~5 因子負荷量 独自因子 a 独自因子 b 共通因子 1 独自因子 c 固有値 ( 因子寄与 ) 独自因子 d 共通因子 2 独自因子 e 共通性 補足説明因子負荷量 : 因子と観測変数の関係性を示す -1.00~+1.00 までの値を取り.60 以上で高く強い関係性があると言える.3

観測変数 1~5 因子負荷量 独自因子 a 独自因子 b 共通因子 1 独自因子 c 固有値 ( 因子寄与 ) 独自因子 d 共通因子 2 独自因子 e 共通性 補足説明因子負荷量 : 因子と観測変数の関係性を示す -1.00~+1.00 までの値を取り.60 以上で高く強い関係性があると言える.3 異文化言語教育評価論 IB M.S. 因子分析 1. 主成分分析と因子分析の基本的概念の違い主成分分析と因子分析は多数の変数から少数の変数を得ることを目的とした いわば標本が持つ情報を要約 説明するための探索型分析手段である 両分析は以下のようなモデルで示すことが出来る 主成分分析因子分析 観測変数 1 観測変数 1 観測変数 2 主成分 1 観測変数 2 因子 1 観測変数 3 観測変数 3 合成

More information

<4D F736F F F696E74202D B835E89F090CD89898F4B81408F6489F18B4195AA90CD A E707074>

<4D F736F F F696E74202D B835E89F090CD89898F4B81408F6489F18B4195AA90CD A E707074> 重回帰分析 (2) データ解析演習 6.9 M1 荻原祐二 1 発表の流れ 1. 復習 2. ダミー変数を用いた重回帰分析 3. 交互作用項を用いた重回帰分析 4. 実際のデータで演習 2 復習 他の独立変数の影響を取り除いた時に ある独立変数が従属変数をどれくらい予測できるか 変数 X1 変数 X2 β= 変数 Y 想定したモデルが全体としてどの程度当てはまるのか R²= 3 偏相関係数と標準化偏回帰係数の違い

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研 CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育

More information

発表の流れ 1. 回帰分析とは? 2. 単回帰分析単回帰分析とは? / 単回帰式の算出 / 単回帰式の予測精度 <R による演習 1> 3. 重回帰分析重回帰分析とは? / 重回帰式の算出 / 重回帰式の予測精度 質的変数を含む場合の回帰分析 / 多重共線性の問題 変数選択の基準と方法 <R による

発表の流れ 1. 回帰分析とは? 2. 単回帰分析単回帰分析とは? / 単回帰式の算出 / 単回帰式の予測精度 <R による演習 1> 3. 重回帰分析重回帰分析とは? / 重回帰式の算出 / 重回帰式の予測精度 質的変数を含む場合の回帰分析 / 多重共線性の問題 変数選択の基準と方法 <R による R で学ぶ 単回帰分析と重回帰分析 M2 新屋裕太 2013/05/29 発表の流れ 1. 回帰分析とは? 2. 単回帰分析単回帰分析とは? / 単回帰式の算出 / 単回帰式の予測精度 3. 重回帰分析重回帰分析とは? / 重回帰式の算出 / 重回帰式の予測精度 質的変数を含む場合の回帰分析 / 多重共線性の問題 変数選択の基準と方法 回帰分析とは?

More information

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220 5. 判別分析 5. 判別分析の原理 判別分析は後ろ向き研究から得られたデータに適用する手法 () 判別分析 医学分野では病気の診断を必要とする場面が多い ある検査項目を用いて被験者が疾患かどうかを判断したいまたはある検査項目が疾患の診断に寄与するかどうかを検討したい 判別分析は多種類のデータに基いて被験者を特定の群に判別したり 判別に強い影響を及ぼ すデータを探索したりするための手法 後ろ向き研究から得られたデータに適用する

More information

13章 回帰分析

13章 回帰分析 3 章回帰分析の基礎 つ以上の変数についての関係を見る. つの変数を結果, その他の変数を原因として, 因果関係を説明しようとするもの. 厳密な意味での因果関係ではない 例 因果 相関関係等 勤務年数が長ければ, 年間給与は上がる. 景気が良くなれば, 株価は上がる 父親の身長が高ければ, 子供の身長も高い. 価格が低下すれば需要が増える. 自身の兄弟数が多いと, 育てる子供の数も多い. サッカー人気が上がると,

More information

Ecel 演習問題 Work Shee 解答 第 章 Ecel 演習問題 WorkShee 解答 問題 - 4 8 7 転置行列 4 8 7 TRANSPOSE( ) 問題 - X.6 4 4.8 8 4.9 6. 7 48 8. X 転置行列 4 8 7 4 6 48 TRANSPOSE( ).6 4.8.9. 8. 問題 -.6 4 4.8 8 y.9. 7 8. 転置行列 4 8 7 TRANSPOSE(

More information

Microsoft Word - M4_9(N.K.).docx

Microsoft Word - M4_9(N.K.).docx 第 9 章因子分析 9-1 因子分析とは 因子分析 (factor analysis) 実験や観測によって得られた 観測変数 の背後に存在する 因子 を推定する統計的分析手段 観測変数 (observed variable) 実験や観測を通して得られたデータ ( 観測値 ) 因子 (factor) 得られた観測変数に対し影響を及ぼしている 一見すると表には出て来ていない潜在的な要因のこと 潜在変数

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

Excelによるデータ分析

Excelによるデータ分析 Excel による データ分析 多変量解析編 矢野佑樹 2013/07/27 Excel で学ぶデータ分析 ( 多変量解析編 ) 多変量解析では, 気温とアイスの売上個数の関係や, 最寄り駅からの距離と来店者数の 関係など,2 つ以上の変数を一度に分析します. では, 早速 2 つのデータ間の関係を Excel によって分析しましょう. < 散布図と相関 > 例 1. あるアイスクリーム販売店では,1

More information

4.統計解析.indd

4.統計解析.indd 多変量解析を用いたメタボロームデータ解析 Multivariate Analysis Approach for Metabolome Data Analysis 4.1 メタボロミクスにおける多変量解析の役割 メタボロミクスにおいて 多変量解析はデータの視覚化 または回帰 判別の予測モデルの構築のために用いられている 多変量解析の手法としてよく知られ またメタボロミクスで比較的よく用いられる方法として

More information

Microsoft PowerPoint - データ解析演習 0520 廣橋

Microsoft PowerPoint - データ解析演習 0520 廣橋 JMP の使い方 京都大学教育学研究科 M1 廣橋幹也 JMP とは SAS Institute 社より発売されているビジュアル探索型データ分析ソフトウェア 解析結果は全てビジュアルで表現される JMP の特徴 データの編集機能が素晴らしい 直観的に図をいじれる 余計な機能が絞ってある 高度な分析手法も取り入れられている データの読み込み方 ファイル をクリックします 開く をクリックしてファイルを選びます

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

Microsoft PowerPoint 古川杉本SASWEB用プレゼン.ppt

Microsoft PowerPoint 古川杉本SASWEB用プレゼン.ppt ロジスティックモデルと ROC AUC 分析を 組み合わせた検査性能の評価と 疫学基本モデル評価方法 古川敏仁 杉本典子株式会社バイオスタティスティカルリサーチ Test Perforance Evaluation in Epideiological Basic Model Using ROC AUC with logistic regression Toshihito Furukawa, Noriko

More information

Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード] R で統計解析入門 (12) 生存時間解析 中篇 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv /fkh /d 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. 2 の場所に移動し, データを読み込む 4. データ

More information

Excel で学ぶ 実験計画法データ処理入門 坂元保秀 まえがき 本テキストは, 大学の統計解析演習や研究室ゼミ生の教育の一環として, 実験計画法を理解するための序論として, 工業系の分野で収集される特性データを Microsoft Excel を用いて実践的に処理する方法を記述したものである. 当初は, 完全ランダム実験で二元配置法まで Excel 関数を利用して実施していたが, 企業の皆様から身近に解析ができる

More information

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :

More information

1. 研究の背景 目的 背景 臼杵の町は 城下町であったこともあり 地形を上手に利用した特色のある街並みが形成されている 現在臼杵では 歴史的景観を保存 再生する街並みづくりが行われている そして中央通商店街周辺においても整備計画が持ち上がっている 目的 VR をもちいた景観シミュレーションにより

1. 研究の背景 目的 背景 臼杵の町は 城下町であったこともあり 地形を上手に利用した特色のある街並みが形成されている 現在臼杵では 歴史的景観を保存 再生する街並みづくりが行われている そして中央通商店街周辺においても整備計画が持ち上がっている 目的 VR をもちいた景観シミュレーションにより VR を用いた商店街の ビスタ景観の評価に関する研究 大分大学工学部建設工学科都市計画研究室 安東奈美 實敏江 1. 研究の背景 目的 背景 臼杵の町は 城下町であったこともあり 地形を上手に利用した特色のある街並みが形成されている 現在臼杵では 歴史的景観を保存 再生する街並みづくりが行われている そして中央通商店街周辺においても整備計画が持ち上がっている 目的 VR をもちいた景観シミュレーションにより

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

相関分析・偏相関分析

相関分析・偏相関分析 相関分析 偏相関分析 教育学研究科修士課程 1 回生 田中友香理 MENU 相関とは 相関分析とは ' パラメトリックな手法 ( Pearsonの相関係数について SPSSによる相関係数 偏相関係数 SPSSによる偏相関係数 順位相関係数とは ' ノンパラメトリックな手法 ( SPSS による順位相関係数 おまけ ' 時間があれば ( 回帰分析で2 変数間の関係を出す 曲線回帰分析を行う 相関とは

More information

論文内容の要旨

論文内容の要旨 論文の内容の要旨 大腸癌検診における精密検査の受診に関連する要因 指導教員甲斐一郎教授東京大学大学院医学系研究科平成 16 年 4 月進学博士課程健康科学 看護学専攻氏名鄭迎芳 第 Ⅰ 章緒言日本の大腸癌による死亡者数は急増し 年齢調整死亡率は諸外国に比べて上位の水準に達している しかし 日本の大腸癌検診では 一次検診で精密検査 ( 以下 精査と略す ) が必要と判定された者の精査受診率は 60%

More information

株式会社エスミ 統計総合カタログ2018年4月版

株式会社エスミ 統計総合カタログ2018年4月版 シリーズ概要 EXCEL 統計解析シリーズ 動作環境 エスミのEXCEL 統計解析シリーズ /Mac 統計解析シリーズは Microsoft Excel 上で動作する統計解析ソフトウエアです Excelがインストールされているパソコンならば どなたでもお使いいただけるソフトウエアです ( Excelのバージョンなどによっては 正常に動作しない場合があります 詳しくは後述する 動作環境 欄をご参照ください

More information

JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと

JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかというお問い合わせがよくあります そこで本文書では これらについて の回答を 例題を用いて説明します 1.

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 調査統計法 ( 杉浦 ) 第 1 回 オリエンテーション ( 自己紹介 ) 京都警察 ~ 大和総研を経て独立 ユニクロやソフトバンクなどで IT マーケティングやデータ分析を支援 1 調査統計法で何を学ぶのか - 学術研究でもビジネスでも必要となるデータ分析の知識 - なぜ 統計学が最強の学問なのか? http://diamond.jp/articles/-/52085 エビデンスベースドメディスン

More information

Microsoft Word - lec_student-chp3_1-representative

Microsoft Word - lec_student-chp3_1-representative 1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information