H-21.indb

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "H-21.indb"

Transcription

1

2 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 ) ) ) ) ) h b

29 C N S c a js S M 3 F % % EL Q

30 P O H J E % E L % L U R 09*# # *

31 k S c a js S dp

32 1 2 3

33 )

34

35

36

37

38

39

40

41

42 1) 1 ) 2 )) 1)

43 1 2

44

45

46

47 ac 1O 2ac 19 2ac

48 a c S S % % % O E %E U R a c S S 9 d d d g dg 7 a a

49 a a ac ax av aa az aq an a 1)

50

51

52 1 2

53 1 2 c

54 gf 1 2

55 ) 1) 2)

56

57 L 190#* # *

58 # * r d E d 190# % EL % E L %EL %c % %E %L

59 f bhi i i i di d d d b db h

60 a a a ac ax av aa az aq an e f df j 1 2 3

61 1 2 3d 4ac 5ac l E h b

62 1 2r r r 3d 4ac 1 2 3d 4ac s E

63 j h b 1 2 3d 4ac 1%L df 2ac a a c E b

64 c 1c 2

65

66

67 1 2 Q Q

68

69 N E E 209N 3M

70 1N 20MN bb 35 ) c 09*# idegfbha P WN 0MLE 1N 2 3 1N

71 1N j N s 1N N 1NYNKYNH 2N

72 1N 2M 1N 25 gf 1gf 1

73 1N N N

74 1 2 3

75 1N*25251N 1NLUJUJYN

76 1N*25250N 1NLUJUJ0N 1N*25259N 1NLUJUJMN

77 1 2

78

79 1 1 2N 1

80 2 3 1N1429N 2 1kYHUMk 2

81

82 j

83 1 2 3

84

85

86

87

88

89

90

91

92

93

94

95 1 2 3

96

97

98

99

100

101

102

103

104

105

106

107 1 2

108 1 2

109

110 ! " #

111

112

113

114

115 1 2 3

116 1 2 a c

117

118 j j 3

119 1 2

120 1 2 bfj b b13 b

121 3 4

122 b 3

123 1 2b 3

124

125

126

127

128

129

130 C C C 3

131 1 2C 3C

132

133

134

135

136 1 2 3 S

137

138

139

140

141 FJQP 13 h C

142 NF3MCb k1jqp5cb

143

144 M dp

145

146

147

148

149

150 ) )

151 gf

152

153

154

155

156

157

158

159

160

161

162

N N 1,, N 2 N N N N N 1,, N 2 N N N N N 1,, N 2 N N N 8 1 6 3 5 7 4 9 2 1 12 13 8 15 6 3 10 4 9 16 5 14 7 2 11 7 11 23 5 19 3 20 9 12 21 14 22 1 18 10 16 8 15 24 2 25 4 17 6 13 8 1 6 3 5 7 4 9 2 1 12 13

More information

取扱説明書[d-01G]

取扱説明書[d-01G] d-01g 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 T 18 1 2 19 3 1 2 4 3 4 20 21 1 2 3 4 22 1 T 2 T 1 T 2 T 23 1 T 1 2 24 25 1 2 26 1 T 27 1 2 3 1 2 3 28 29 30 1 2 1 2 31 1 2 3 32 1 2 3 4 5 1 2 3 4 33 1

More information

社葬事前手続き

社葬事前手続き 2 ... 4... 4... 5 1... 5 2... 5 3... 5 4... 5 5... 5 6... 5 7... 5 8... 6 9... 6 10... 6... 6 1... 6 2... 6 3... 7 4... 7... 8 1 2.... 8 2 2.... 9 3 4.. 3 4. 1 2 3 4 5 6 7 5 8 9 10 I 1 6 2 EL 3 4 24 7

More information

-----------------------------------------------------------------------------------------1 --------------------------------------------------------------------------------------1 -------------------------------------------------------------------------------------1

More information

›¼’à”v“lŠÍ1−ª

›¼’à”v“lŠÍ1−ª 3 1 1 2 3 4 5 6 7 8 8 10 12 14 16 18 20 22 24 2 1 2 3 4 5 6 7 8 9 10 11 12 26 28 30 32 34 36 38 40 42 44 46 48 50 4 3 1 2 3 4 5 52 54 56 58 60 6 62 7 8 9 10 64 66 68 70 72 5 1 1 4 2 5 6 6 7 1 8 1 9 2 10

More information

1 2 3 4 1 2 3 4 1 2 3 4 12 3 4

1 2 3 4 1 2 3 4 1 2 3 4 12 3 4 1 2 3 4 5 6 1 2 3 4 5 6 1 2 1 2 1 2 1 2 1 2 3 4 12 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 12 3 4 1 2 3 4 5 6 7 8 1 2 3 46 7 1 2 3 4 5 6 7 1 2 3 4 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 16 7 8 92 3 46 7 :

More information

- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 2-12 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 1 - 2 - 3 6 1 1-4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 130 3 130 5 2 50 1.5 48 59 62 63-9 - 1 - 2 - 3 () - 4 - 5 -

More information

S1460...........\1.E4

S1460...........\1.E4 3 4 3 4 5 3 4 5 3 4 3 4 3 3 3 3 4 3 4 3 3 4 4 3 3 3 3 4 3 4 3 3 3 3 3 3 4 3 4 3 4 5 4 3 5 4 3 3 4 5 3 4 5 4 3 4 3 3 4 3 4 3 3 3 3 3 4 3 3 4! "! " " 0 6 ! " 3 4 3 3 4 3 ! " 3 3 4 5 4 5 6 3 3

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

エンジョイ北スポーツ

エンジョイ北スポーツ 28 3 20 85132 http://www.kita-city-taikyo.or.jp 85 63 27 27 85132 http://www.kita-city-taikyo.or.jp 2 2 3 4 4 3 6 78 27, http://www.kita-city-taikyo.or.jp 85132 3 35 11 8 52 11 8 2 3 4 1 2 4 4 5 4 6 8

More information

AC-2

AC-2 AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 AC-9 * * * AC-10 AC-11 AC-12 AC-13 AC-14 AC-15 AC-16 AC-17 AC-18 AC-19 AC-20 AC-21 AC-22 AC-23 AC-24 AC-25 AC-26 AC-27 AC-28 AC-29 AC-30 AC-31 AC-32 * * * * AC-33

More information

広報さっぽろ 2016年8月号 厚別区

広報さっぽろ 2016年8月号 厚別区 8/119/10 P 2016 8 11 12 P4 P6 P6 P7 13 P4 14 15 P8 16 P6 17 18 19 20 P4 21 P4 22 P7 23 P6 P7 24 25 26 P4 P4 P6 27 P4 P7 28 P6 29 30 P4 P5 31 P5 P6 2016 9 1 2 3 P4 4 P4 5 P5 6 7 8 P4 9 10 P4 1 b 2 b 3 b

More information

% 32.3 DI DI

% 32.3 DI DI 2011 7 9 28.1 41.4 30.5 35.8 31.9% 32.3 DI 18.2 2.4 8.1 3.5 DI 9.4 32.2 0.0 25.9 2008 1 3 2 3 34.8 65.2 46.753.8 1 2 8.82.9 43.1 10 3 DI 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

More information

31, 21% 24, 17% 8, 5% 23, 16% 24, 16% 91, 62% 19, 13% 39, 27% 33, 23% 73 48 57 51 31 1 9 13.0% 7.4% 5.3% 12.5% 17.1% 13.2% 17.9% 4.5% 36.4% 56.5% 40.7% 36.8% 50.0% 67.1% 56.3% 65.8% 75.0% 26.0% 37.0%

More information

2 DI 28 7 1 37 28 4 18 27 11 21 5 2 26 4 5 1 15 2 25 3 35 4 17 7 5 48 76 31 47 17 2 92 12 2 2 4 6 8 1 12 1 2 4 1 12 13 18 19 3 42 57 57 1 2 3 4 5 6 1 1 1 3 4 4 5 5 5.5 1 1.5 2 2.5 3 3.5 4 4.5 5

More information

37 27.0% 26 19.0% 74 54.0% 9 6.4% 13 9.2% 28 19.9% 26 18.4% 37 26.2%. 24 17.0% 99 69 75 59 39 1 6 4.5% 1.4% 7.7% 2.9% 25.0% 17.9% 20.8% 50.0% 41.7% 47.0% 51.4% 54.3% 61.5% 57.1% 55.6% 42.4% 50.0% 58.3%

More information

3 DI 29 7 1 5 6 575 11 751, 13 1,1,25 6 1,251,5 2 1,51,75 1,752, 1 2,2,25 2,252,5 2,53, 3,3,5 3,5 5 1 15 2 25 3 5 6 575 12 751, 21 1,1,25 27 1,251,5 9 1,51,75 1,752, 1 2,2,25 2 2,252,5 2,53, 2 3,3,5

More information

09-12-15_1203new

09-12-15_1203new 12 15 12/15 1/14 E _ GC DC Y FB GA BF Y 2 g g a f Y b b d b b c c b b g a c e b f b - Y b b c a c C A C C Y f g a b c d e - g a b c d c ab ab b g bb fbbd 3 4 1 F B 1 DF C A A A 6 G F A B 5 GA 6 E BF G

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

働く女性の母性健康管理、母性保護に関する法律のあらまし

働く女性の母性健康管理、母性保護に関する法律のあらまし 17 1 3 3 12 3 13 10 19 21 22 22 23 26 28 33 33 35 36 38 39 1 I 23 2435 36 4/2 4/3 4/30 12 13 14 15 16 (1) 1 2 3 (2) 1 (1) (2)(1) 13 3060 32 3060 38 10 17 20 12 22 22 500 20 2430m 12 100 11 300m2n 2n

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

G A A G A G 4 1 1 2 3 4 5 6 7 110119118 b A G C G 4 1 7 * G A C b a HIKJ K J L f B c K c d e G 7 1 G 1 aa L M G L H G G 4 aa c c A a CB B A G f c C A G f G 9 8 1 2 c c G A A A f 1 13

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

, ,279 w

, ,279 w No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574

More information

A G A G A G 4 1 1 2 3 4 5 6 7 110119118 b A G C G 4 1 7 * * G A C b a HIKJ K J L f B c g 9 K c d g e 7 G 7 1 G 1 aa g g g c L M G L H G G 4 aa c c A a c CB B C A G f A G f G 9 8 1 2

More information

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000 EDOGAWA ITY Y @ Y 60 7 66997 00 00 00 00 600 000 000 4900 900 700 000 f 004000 00 000 7f 70g 0 0 007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040

More information

0

0 G 1 G 2 3 2 3 4 14 f f 0 G G G G a1 GF f 1 1 1 L I H M K J f 1 5 G G G G GG Aa G f 6 G G G Aa G f 1 2 1 2 3 45 C 123 3 4 1234 5 6 7 123 e 8 9 0 1 2 3 4 1 2 3 4 14 f N f f f 1 1 2 12 3 4 5 6 f 3 G G 1 12

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

05‚å™J‚å−w“LŁñ‘HP01-07_10/27

05‚å™J‚å−w“LŁñ‘HP01-07_10/27 2005 163 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 9 10 g a 11 c e a 12 c g a f d 13 e f g g 1 2 f 14 bf e bd 15 bd bd bdf f b 16 17 18 bb 19 fe 20 21 ag 22 bb dd 23 EA e f g a 24 25 25 ea e a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

†ı25”Y„o-PDF.ren

†ı25”Y„o-PDF.ren 12,000 10,000 8,000 6,000 4,000 2,000 0 1998 1999 2000 2001 2002 2003 2004 1,200 1,000 800 600 400 200 0 1998 1999 2000 2001 2002 2003 2004 $ "! ''" '' ''$ ''% ''& '''! " ' & % $ "! ''" ' '$ '% '& ''!

More information

kennsetusuijyunnakabane.xls

kennsetusuijyunnakabane.xls 75 50 35 25 20 12 8 6 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1,200 1,200 1,500 1,800 (1,100) (1,100) (1,450) 850 1,200 1,500 1,800 (800) (1,100) (1,450) 850 (800) 850 (800) 850 (800) 1,800 1 850 2 3 41 db AA

More information

76

76 ! # % & % & %& %& " $ 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 % & &! & $ & " & $ & # & ' 91 92 $ % $'%! %(% " %(% # &)% & 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 !$!$ "% "%

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

1 2

1 2 ( ) ( ) ( ) 1 2 59 2 21 24 275 43 3 26 486 103 27 28 98 105 104 99 1 48 25 29 72 14 33 11-10 3 11 8 14,663 4 8 1 6.0 8 1 0.7 11-6 27 19 22 71 5 12 22 12 1,356 6 4,397 3 4 11 8 9 5 10 27 17 6 12 22 9

More information

05‚å™J“LŁñfi~P01-06_12/27

05‚å™J“LŁñfi~P01-06_12/27 2005 164 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 g a 9 f a 10 g e g 11 f g g 12 a g g 1 13 d d f f d 14 a 15 16 17 18 r r 19 20 21 ce eb c b c bd c bd c e c gf cb ed ed fe ed g b cd c b 22 bc ff bf f c f cg

More information

目次

目次 00D80020G 2004 3 ID POS 30 40 0 RFM i ... 2...2 2. ID POS...2 2.2...3 3...5 3....5 3.2...6 4...9 4....9 4.2...9 4.3...0 4.4...4 4.3....4 4.3.2...6 4.3.3...7 4.3.4...9 4.3.5...2 5...23 5....23 5.....23

More information