p-9-10.eps
|
|
|
- ためひと こやぎ
- 9 years ago
- Views:
Transcription
1 Root 08M
2 Root Tree Fuego Root Tree Root Root 2 Fuego Root CPU Root 64CPU Chaslot Root Root 1
3 RAVE Leaf Tree Root Root Fuego ( ) Root Root Tree
4 4.6 Root Tree Root Root Root
5 MiniMax Leaf Tree Root Root fuego fuego [5] Bonanza :Root ( 4 64 ) vs Fuego :Root ( 4 64 RAVE ) vs Fuego(RAVE ) :Root ( 4 64 ) vs Mogo :Root ( 4 64 ) vs Fuego :Root ( 4 64 ) vs Mogo :Root ( 64 )vstree (1 8 ) :Root ( 64 )vstree (1 8 ) F tree ( ) F tree ( ) :F80s : Fuego,Root ( ),Tree :F80s : Fuego,Root ( ),Tree :F80s : Root ( :F80s : Root ( ) (0 0.2) ( ) ( ) ( ) ( )
6 (0 0.2) ( ) ( ) ( ) (0,8 1.0)
7 2.1 ( ) Single-Run Multiple-Runs GnuGo3.6 (T.Cazenave et al. 2006) Root Tree GnuGo (G.Chaslot et al. 2008) Root Tree GnuGo (G.Chaslot et al. 2008) (%)(8 8Root ) (%)(8 8Root ) Root 64 Root vs (%) Root 64 Root vs (%) ( 3.4% (187/5500 )) ( 2.3% (159/6759 )) ( 8.7% (2277/26064 )) ( 4.9% (1314/27032 )) ( 5 ) ( 5 )
8 [12] 1996 [17] 1997 IBM Deep Blue Kasparov [11] ,4 70 ( ) GnuGo ( ) 7
9 1.2 CPU ( ) Tree [6, 7] CPU Root [1] CPU Tree Tree [7, 5] Chaslot Root Tree [2] [2] Root Root Root Tree Root CPU Chaslot Root [2] (2 ) Chaslot RAVE[22] Chaslot 16CPU CPU Root Root Tree Root 64 CPU Fuego Fuego RAVE 8
10 Tree Chaslot Root [25] Root CPU Root Root Root Root : 3 : 4 : 5 : 9
11 2 2.1 UCT ( ) ( 3 3 ( 2.1)) ( ) 2.1:
12 : ( ) (9 ) (19 ) minimax minimax ( ) Max Min ( 2.2) 2.2 (Mini ) ( 2.2-1) (Max ) (Mini ) ( 2.2-2) (Mini ) (Max ) ( 2.2-3) Max ( ) (Mini ) ( 2.2-4) 55 A [21] 11
13 Minimax Minimax [4] C 65 D D 65 (Max ) 65 (Mini ) : MiniMax 4 [10] minimax GunGo[20].GnuGo GnuGo 5 2,3 2 / / 2 12
14 / 1. 2., minimax A B B A ( i s i X i 1 0 X i X i = X i (2.1) s i X i i ( )
15 2.3: 14
16 2.1.3 ( ) [23]. ( A ) ( B ) A B B ( ) UCT UCB1 [16] Auer 15
17 UCB1 [19] UCB1 ( ) UCB1 UCB(i) = X i + c 2log(n) n i (2.2) 2.2 UCB1 X j j n j j n ( )+( ) c c c = 2 UCB UCT(UCB applied to Trees) L.Koscis UCB1 UCT(UCB applied to Trees) [15] UCT UCT 2.4 UCT,UCB1 UCB1 UCB1 UCB UCB1 ( ) UCB1 (UCB1 ) 2. ( ) 16
18 UCB1 3 ( ) UCB1 1 4 ( ) 2.4: 17
19 2.5: 2.2 UCT MoGo CrazyStone[3, 9] UCT MoGo 3 3 [9] RAVE UCT-RAVE(Rapid Action Value Estimate)[8] RAVE i i 18
20 RAVE X E UCT X uct UCT-RAVE X value X value = βx RAV E + (1 β)x uct (2.3) k β = (2.4) 3s + k s k 2.3 CPU ( ) 19
21 Leaf Leaf ( 2.6) Leaf [1, 2] ( ) UCT ( ) p1 p4 2.6: Leaf Leaf 20
22 Leaf Leaf [13] Tree Tree ( 2.7) Tree ( ) UCB [9] Tree CPU Tree [6, 7]. 2.7: Tree Tree UCB Chaslot [2] 21
23 4 Enzenberger Tree C++ volatile IA-32 Intel-64 CPU [6] UCB, 9 2,19 3, PC PC Gelly [7] Tree Chaslot (Virtual Loss) [2] Virtual Loss ( ) Chaslot Virtual Loss Root Root ( 2.8) Root [1] ( ) (p1 p4) Root Root. Cazenave Chaslot [1, 2], Cazaneve 22
24 2.8: Root Chaslot 3. UCT A,B,C 3 B Root Root Root 3 23
25 2.9: Root Cazenave Root [1] Root Zen Zen Root [14] Zen Cazenave [1] Single-Run(Root) At-the-leaves(Leaf) Multiple- Runs( ) At-the-leaves Multiple-Runs 16 Multiple-Runs Single-Run 16 ( 2.2) 2.2: Single-Run Multiple-Runs GnuGo3.6 (T.Cazenave et al. 2006) 1CPU 2CPUs 4CPUs 8CPUs 16CPUs Single-Run(Root) Multiple-Runs Chaslot 16CPU Leaf Root Tree 24
26 [2] 2.3: 13 1 Root Tree GnuGo (G.Chaslot et al. 2008) 1CPU 2CPUs 4CPUs 16CPUs Leaf Root Tree : 9 Root Tree GnuGo (G.Chaslot et al. 2008) (s) Root Tree Root Tree ( 2.3) 9 Root Tree ( 2.4) [2] 13 Root Tree 9 13 Leaf Root Tree 25
27 3 Root Root 3.1 Fuego 3.2 Root 3.3 Root Fuego ( ) fuego Fuego[5] 3.1: fuego Computer Olympiad [18] 1 Fuego GtpEngine GTP(Go Text Protocol) 1 C++ 26
28 3.2: fuego [5] 27
29 SmartGame Go Minimax GoUct UCT Fuego RAVE UCT MoGo [9] Fuego [6], MPI 2 Tree Virtual Loss 3.2 Root 2.9 B B [25] ( ). 2 28
30 3.3: Bonanza 29
31 1. 2. Bonanza[?] 1 [26] 2 Bonanza [24] Root ( 3.4). Root 1 ( ) B A A Root ( 3.5) Fuego0.3.2 MPI 1 (p1) (pe) MPI 2 ( ) p1 3 p1 4 p1 pe GoGui-twogtp 30
32 1. 5 pe p1 GoGui-twogtp 3.4: 2.9 B 4 A 2 B 1 C A Root 3.4 Root 2.9 B 2 31
33 3.5: 32
34 Fuego version PC 8 16GB CPU CPU Xeon E GHz 2 MPI MPICH2 1 C++ Mogo release , 19 ( ) Fuego Root MPI Fuego PC 64 Root Root Root Tree LockFree Fuego 16 [6]. PC 8 Tree F t ree Tree
35 Fuego 30 F80s Fuego Root Root Tree Root Tree Root 34
36 4.4 Root 4.1: 9 :Root ( 4 64 ) vs Fuego CPU Root ( ) Fuego Fuego Root Fuego Root 19 Root MoGo 4.3,4.5 CPU Fuego 9 MoGo CPU CPU Root Chaslot RAVE Root Chaslot Root ( ) 35
37 4.2: 9 :Root ( 4 64 RAVE ) vs Fuego(RAVE ) 4.3: 9 :Root ( 4 64 ) vs Mogo 36
38 4.2 Root Fuego RAVE 9 RAVE Chaslot Root RAVE Fuego 4.4: 19 :Root ( 4 64 ) vs Fuego 4.5 Root Tree Root Fuego Tree Root (64 ) Tree Virtual Loss 4.6, 4.7 9, 19 Tree Root Chaslot 64 Root 9 6 Tree Tree Enzenberger Fuego Tree [6] Martin Müller 16CPU Fuego 8 37
39 4.5: 19 :Root ( 4 64 ) vs Mogo Tree UCB1 (2 ) [6] 4.6 Root Tree Root Tree Tree Root 8 Tree Fuego F tree F tree 8 Root ( 8 8 Root ) 4.6,4.6 19,9 8 8 Root F tree MoGo F tree Fuego CPU 8 8 Root 67.0 ( 4.6 ) MoGo Root 77% Root Fuego Root
40 4.6: 9 :Root ( 64 )vstree (1 8 ) 4.7: 19 :Root ( 64 )vstree (1 8 ) 4.1: 9 (%)(8 8Root ) 8 8 Root vs F tree vs Mogo
41 4.2: 19 (%)(8 8Root ) 8 8 Root vs F tree vs Mogo Root 4.7, Root 64 Root Root Root 7 4.3: 9 8 8Root 64 Root vs (%) 8 8 Root Root : Root 64 Root vs (%) 8 8 Root Root
42 4.8 Root 9, 19 Fuego 64 Root (64 Root ) Fuego 200 Root 8 8 Root 8 8 Root F tree (4.6 ) Root 8 8 Root 97 ( 4.5,4.6 ) ( 4.7,4.8 ) (30 ) F tree F tree F tree F tree F tree F tree F tree (( )-1 (F tree 1) (4.1) F tree A Root A 1 Root A F tree Root 9 MoGo , Root Root F tree F tree
43 4.8 A7 A4 (F tree ) A7 A A4 CPU 64 9 A4 A A7 4.9 D1 E8 F tree D1 E E8 E8 CPU 16 D : ( 3.4% (187/5500 )) Root F tree : ( 2.3% (159/6759 )) Root F tree : ( 8.7% (2277/26064 )) Root F tree
44 4.8: ( 4.9% (1314/27032 )) Root F tree A B C D E F G H J A B C D E F G H J 4.8: F tree ( ) A B C D E F G H J A B C D E F G H J 4.9: F tree ( ) 43
45 4.9: 4.8 ( 5 ) 1 A4 29,416 2 H5 25,984 3 A7 25,917 4 H4 20,460 5 H6 2,618 1 A7 25, H4 20, H5 25, A4 29, H6 2, : 4.9 ( 5 ) 1 E8 24,637 2 B2 23,276 3 D1 20,910 4 E9 10,894 5 B1 7,535 1 D1 20, B2 23, E8 24, E9 10, B1 7, Root Root 80 Fuego ( F80s ) F80s 9, ( Fuego Mogo( 10 ) ) F80s ( ) A A = F80s A (4.2) F80s 1. Fuego( 1 64 ) 2. Root Fuego( ) 3. Root Fuego( ) 4.Tree Fuego( ) 44
46 4.10,4.11 Root Tree 4 64 Root Tree : 9 :F80s : Fuego,Root ( ),Tree 45
47 4.11: 19 :F80s : Fuego,Root ( ),Tree Root 19 Root 512 ( Root Root Root 19 Root F80s ( 4.13)
48 4.12: 19 :F80s : Root ( : 19 :F80s : Root ( ) 47
49 4.9.4 (2 ) Root = (4.3) F80s , , 19 (0.6 ) Root ( , ) 0.8 ( 8 ) Root 9, 19 ( 0.4) ( , ) :
50 4.14: 9 (0 0.2) 4.15: 9 ( ) 49
51 4.16: 9 ( ) 4.17: 9 ( ) 50
52 4.18: 9 ( ) 4.19: 19 (0 0.2) 51
53 4.20: 19 ( ) 4.21: 19 ( ) 52
54 4.22: 19 ( ) 4.23: 19 (0,8 1.0) 53
55 4.9.5 Root A n L (A) = [ x L ] (4.4) [30/100] = 0.3 9, , K K K Tree Root ( 1 ) 4.24: 9 54
56 4.25: 19 55
57 5 5.1 Fuego 3 Tree Root 2 Chaslot Tree 9 64 Root Tree Tree 4 64 Root 19 Tree 8 64 Root (4.9.4) Root Tree Root 10 1 Fuego Root Tree 64 8 Tree 1 8 Root ( 8 8 ) Root Tree 8 8 Root (4.6 ) Root 9 19 ( ) 64 Root 8 8 (4.6 ) 56
58 F tree F tree 8 Tree Fuego F tree 30 F tree F tree Root CPU Root Root Fuego Mogo Root 4 64 (4.4 ) Root (4.9.3 ) Root Root ( 4.19) Root Root 57
59 5.2 1 Fuego 10 Root Root 4.13 Root Root Root 58
60 59
61 5.1: 19 60
62 5.2: : 19 61
63 5.4: : 19 62
64 5.6: 9 5.7: 9 63
65 5.8: 9 5.9: 9 64
66 5.10: 9 65
67 [1] T. Cazenave and N. Jouandeau. On the parallelization of UCT. In Proceedings of the Computer Games Workshop, pp , [2] G. M. J-B. Chaslot, M. H.M Winands, and H. J. van den Herik. Parallel Monte- Carlo tree search. In Proceedings of the 6th International Conference on Computer and Games, Vol of Lecture Notes in Computer Science, pp , [3] R. Coulom. Computing Elo ratings of move patterns in the game of Go. ICGA Journal, Vol. 30, No. 4, pp , [4] D.E.Knuth and R.W.Moore. An analysis of alpha-beta pruning. In Artificial Intelligence, pp , [5] M. Enzenberger and M. Müller. Fuego - an open-source framework for board games and Go engine based on Monte-Carlo tree search. TR 09-08, University of Alberta, [6] M. Enzenberger and M. Müller. A lock-free multithreaded Monte-Carlo tree search algorithm. In Advances in Computer Games 12, [7] S. Gelly, J. B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian. The parallelization of Monte-Carlo planning. In Proceedings of the 5th International Conference on Informatics in Control, Automation, and Robotics, pp , [8] S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proceedings of the 24th International Conference on Machine Learning, pp , [9] S. Gelly, Y. Wang, Remi Munos, and O. Teytaud. Modification of UCT with patterns in Monte-Carlo Go. Technical Report 6062, INRIA, [10] GPSshogi [11] J.Schaeffer and A.Plaat. Kasparov versus deep blue: The re-match. In International Computer Chess Association Journal, pp , [12] J.Scheaffer. One jump ahead: Challenging human supremacy in chechkers. In Springer-Verlag, [13] H. Kato and I. Takeuchi. Parallel Monte-Carlo tree search with simulation servers. In Proceedings of the 13th Game Programming Workshop, pp ,
68 [14] H. Kato and I. Takeuchi. Zen. In Proceedings of the 14th Game Programming Workshop, pp , [15] Kocsis.L and Szepesvari.C. Bandit based monte-carlo planning. In 17th European Conference on Machine Learning(ECML 2006), pp , [16] Lai.T.L and Robbins.H. Asymptotically efficient adaptive allocation rules. In Advances in Applied Mathematics, pp. 4 22, [17] M.Buro. The othello match of the year: Takeshi murakami vs logistello. In International Computer Chess Association Journal, pp , [18] M. Müller. Fuego at the Computer Olympiad in Pamplona 2009: a tournament report. TR 09-09, University of Alberta, [19] P.Auer and N.Cesa-Bianchi.P.Fischer. Finite-time analysis of the multiarmed bandit problem machine learning. pp , [20] GNU Go GNU Project [21] Jonathan Schaeffer, Neil Burch, Yngvi Bj?rnsson, Akihiro Kishimoto, Martin M?ller, Robert Lake, Paul Lu, and Steve Sutphen. Checker is solved. In Science 14 September 2007, pp , [22] S.Gelly.Y.Wang, R.Mumos, and O.Teytaud. Modification of uct with patterns in monte-carlo go. In RR-6062-INRIA, pp. 1 19, [23] Yoshimoto.H, Yoshizoe.K, Kaneko.T, Kishimoto.A, and Taura.K. Monte carlo go has a way to go. In Twenty-First National Conference on Artificial Intelligence(AAAI-06), pp , [24],,,. :? In Proceedings of the 14th Game Programming Workshop, pp , [25],, , [26],,,,. -. In Proceedings of the 14th Game Programming Workshop, pp ,
Logistello 1) playout playout 1 5) SIMD Bitboard playout playout Bitboard Bitboard 8 8 = black white 2 2 Bitboard 2 1 6) position rev i
SIMD 1 1 1 playout playout Cell B. E. SIMD SIMD playout playout Implementation of an Othello Program Based on Monte-Carlo Tree Search by Using a Multi-Core Processor and SIMD Instructions YUJI KUBOTA,
[1] AI [2] Pac-Man Ms. Pac-Man Ms. Pac-Man Pac-Man Ms. Pac-Man IEEE AI Ms. Pac-Man AI [3] AI 2011 UCT[4] [5] 58,990 Ms. Pac-Man AI Ms. Pac-Man 921,360
TD(λ) Ms. Pac-Man AI 1,a) 2 3 3 Ms. Pac-Man AI Ms. Pac-Man UCT (Upper Confidence Bounds applied to Trees) TD(λ) UCT UCT Progressive bias Progressive bias UCT UCT Ms. Pac-Man UCT Progressive bias TD(λ)
世界コンピュータ将棋選手権 [30] CSA CSA 電王戦 [31] Computer Olympiad [32] ICGA コンピュータ将棋対局場 [33],floodgate [34] 24 floodgate floodgate
254 30 2 2015 3 ゲームプログラミング ( 将棋を中心に ) 1 竹内聖悟 ( 科学技術振興機構 ERATO 湊離散構造処理系プロジェクト ) 1 1999 [1] 2 2012 松原仁 : ゲーム情報学 :1. ゲーム情報学の現在 ゲームの研究は日本で疎外されなくなったのか [2], 情報処理,Vol. 53, No. 2, pp. 102-106(2012) 小谷善行 : ゲーム情報学
UCT探索を用いた大貧民クライアント
UCT.. ( ) UCT 1 / 34 1 2 UEC 2012 3 4 UCT UCB1 UCB1-Tuned 5 ( ) UCT 2 / 34 1 http://uguisu.skr.jp/othello/ http://matome.naver.jp/odai/2128989764455845801 ( ) UCT 3 / 34 1 : (1997) : (1997) : (2010) :
TD 2048 TD 1 N N 2048 N TD N N N N N N 2048 N 2048 TD 2048 TD TD TD 2048 TD 2048 minimax 2048, 2048, TD, N i
28 2048 2048 TD Computer Players Based on TD Learning for Game 2048 and Its Two-player Variant 2048 2048 TD 2048 TD 1 N N 2048 N TD N N N N N N 2048 N 2048 TD 2048 TD TD TD 2048 TD 2048 minimax 2048, 2048,
Mastering the Game of Go without Human Knowledge ( ) AI 3 1 AI 1 rev.1 (2017/11/26) 1 6 2
6 2 6.1........................................... 3 6.2....................... 5 6.2.1........................... 5 6.2.2........................... 9 6.2.3................. 11 6.3.......................
IPSJ SIG Technical Report Vol.2016-GI-35 No /3/9 StarCraft AI Deep Q-Network StarCraft: BroodWar Blizzard Entertainment AI Competition AI Convo
StarCraft AI Deep Q-Network StarCraft: BroodWar Blizzard Entertainment AI Competition AI Convolutional Neural Network(CNN) Q Deep Q-Network(DQN) CNN DQN,,, 1. StarCraft: Brood War *1 Blizzard Entertainment
Run-Based Trieから構成される 決定木の枝刈り法
Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network
連載講座 : 高生産並列言語を使いこなす (3) ゲーム木探索問題 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 概要 17 2 ゲーム木探索 必勝 必敗 引き分け 盤面の評価値 αβ 法 指し手の順序付け (mo
連載講座 : 高生産並列言語を使いこなす (3) ゲーム木探索問題 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 概要 17 2 ゲーム木探索 17 2.1 必勝 必敗 引き分け 17 2.2 盤面の評価値 18 2.3 αβ 法 19 2.4 指し手の順序付け (move ordering) 20 3 Andersson の詰み探索およびその並列化 21 3.1 Andersson
JVRSJ Vol.18 No.3 September, 2013 173 29 2 1 2 1 NPC 2004 1 RTS Real-time Simulation NPC NPC NPC AI NPC 4 AI 2 AI 2 3 4 図 1 ゲームとユーザエクスペリエンス reality a
28 172 日 本 バーチャルリアリティ 学 会 誌 第 18 巻 3 号 2013 年 9 月 1 [1] 1 [2-5] NPC Non-Player-Character 80 90 NPC 2000 NPC 2 AI AI AI [6-8] RPG AI NPC AI AI RPG AI [5][9][10] 3 AI 2 AI 1 [11] 28 JVRSJ Vol.18 No.3 September,
2 ( ) i
25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA
3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root
1,a) 2 2 1. 1 College of Information Science, School of Informatics, University of Tsukuba 2 Faculty of Engineering, Information and Systems, University of Tsukuba a) [email protected] 2.
27 28 2 15 14350922 1 4 1.1.................................... 4 1.2........................... 5 1.3......................... 6 1.4...................................... 7 2 9 2.1..........................
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
連載講座 : 高生産並列言語を使いこなす (4) ゲーム木探索の並列化 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 準備 問題の定義 αβ 法 16 2 αβ 法の並列化 概要 Young Brothers Wa
連載講座 : 高生産並列言語を使いこなす (4) ゲーム木探索の並列化 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 準備 16 1.1 問題の定義 16 1.2 αβ 法 16 2 αβ 法の並列化 17 2.1 概要 17 2.2 Young Brothers Wait Concept 17 2.3 段数による逐次化 18 2.4 適応的な待機 18 2. 強制終了
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
スライド 1
モンテカルロ法によるゲームAIの可能性 美添一樹 [email protected] スライドの最後に 当日説明しきれなかった内容の補足があります 自己紹介 ( 最初の ) 大学院生時代には並列計算を研究 その後 某研究所に就職 携帯関係の研究開発 なぜか大学院に戻って 人工知能の研究 今はいわゆるポスドクで 量子計算機の研究中 コンピュータ囲碁の研究も続けている 専門はたぶん 探索アルゴリズム 囲碁は自称三段
The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo
Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard 64 81 Magic Bitboard Magic Bitboard Bonanza Proposal and Implementation of Magic Bitboards in Shogi Issei Yamamoto, Shogo Takeuchi,
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
2 (S, C, R, p, q, S, C, ML ) S = {s 1, s 2,..., s n } C = {c 1, c 2,..., c m } n = S m = C R = {r 1, r 2,...} r r 2 C \ p = (p r ) r R q = (q r ) r R
RF-004 Hashimoto Naoyuki Suguru Ueda Atsushi Iwasaki Yosuke Yasuda Makoto Yokoo 1 [10] ( ). ( ) 1 ( ) 3 4 3 4 = 12 deferred acceptance (DA) [3, 7] [5] ( ) NP serial dictatorship with regional quotas (SDRQ)
医 事 法 山口大法医 藤宮龍也
2 ( If anything can go wrong, it will. Things go wrong in batches. MiniMax (mini) (max) ( ) - 134 135 105 149 1) 2) 3) cf. cf. - 160-214 cf. - 211 209,210-204 vs 35 37-19 217 218-202 203 cf. - ( ) 104
main.dvi
305 8550 1 2 CREST [email protected] 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2
PowerPoint プレゼンテーション
モンテカルロ木探索 並列化 囲碁 マリオ AI 美添一樹 ETATO 研究員 湊離散構造処理系プロジェクト 2013 年度秋のワークショップ 2013 年 11 月 26 日 並列モンテカルロ木探索の意義 コンピュータ囲碁で人間を超える 情報科学の有効性を示す 大規模並列探索ライブラリ 近い将来 全てのアルゴリズムは大規模並列化が必要 並列探索は実装が 非常に 大変なのでライブラリとして提供できると良い
A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹
A Japanese Word Dependency Corpus 2015 3 18 Special thanks to NTT CS, 1 /27 Bunsetsu? What is it? ( ) Cf. CoNLL Multilingual Dependency Parsing [Buchholz+ 2006] (, Penn Treebank [Marcus 93]) 2 /27 1. 2.
IPSJ SIG Technical Report Vol.2011-CE-110 No /7/9 Bebras 1, 6 1, 2 3 4, 6 5, 6 Bebras 2010 Bebras Reporting Trial of Bebras Contest for K12 stud
Bebras 1, 6 1, 2 3 4, 6 5, 6 Bebras 2010 Bebras Reporting Trial of Bebras Contest for K12 students in Japan Susumu Kanemune, 1, 6 Yukio Idosaka, 1, 2 Toshiyuki Kamada, 3 Seiichi Tani 4, 6 and Etsuro Moriya
1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +
3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation
Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho
Haiku Generation Based on Motif Images Using Deep Learning 1 2 2 2 Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura 2 1 1 School of Engineering Hokkaido University 2 2 Graduate
リコー工業所有権紹介|リコーテクニカルレポートNo.23
138 Ricoh Technical Report No.23, SEPTEMBER, 1997 Ricoh Technical Report No.23, SEPTEMBER, 1997 139 140 Ricoh Technical Report No.23, SEPTEMBER, 1997 Ricoh Technical Report No.23, SEPTEMBER, 1997 141 142
RoboCup 1 2D 3D Figre 1 2 2D 3D 2D 2D 3D 2D 2D Earth Mover s Distance Earth Mover s Distance 3.1 (x y ) p i w pi Figure 3 opuscom Uv
社団法人人工知能学会 Japanese Society for Artificial Intelligence 人工知能学会研究会資料 JSAI Technical Report SIG-Challenge-042-01 (5/3) RoboCup Predicting Game Results using Kick Distributions in RoboCup,, Jordan Henrio,,
IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus
IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsushi UMEMURA, Yoshiharu KANESHIMA, Hiroki MURAKAMI(IHI
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
FINAL PROGRAM 22th Annual Workshop SWoPP / / 2009 Sendai Summer United Workshops on Parallel, Distributed, and Cooperative Processing
FINAL PROGRAM 22th Annual Workshop SWoPP 2009 2009 / / 2009 Sendai Summer United Workshops on Parallel, Distributed, and Cooperative Processing 2009 8 4 ( ) 8 6 ( ) 981-0933 1-2-45 http://www.forestsendai.jp
IPSJ SIG Technical Report Vol.2013-ARC-206 No /8/1 Android Dominic Hillenbrand ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GP
Android 1 1 1 1 1 Dominic Hillenbrand 1 1 1 ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GPIO API GPIO API GPIO MPEG2 Optical Flow MPEG2 1PE 0.97[W] 0.63[W] 2PE 1.88[w] 0.46[W] 3PE 2.79[W] 0.37[W] Optical
i
21 Fault-Toleranted Authentication Data Distribution Protocol for Autonomous Distributed Networks 1125153 2010 3 2 i Abstract Fault-Toleranted Authentication Data Distribution Protocol for Autonomous Distributed
2011 : M Schell Interest curve Schell Chan FPS Schell Interest curve Chan FPS Chan Chan Chan Chan
2011 M0106515 2011 : M0106515 Schell Interest curve Schell Chan FPS Schell Interest curve Chan FPS Chan Chan Chan Chan 1 1 1.1............................. 1 1.2................................. 4 2 5
main.dvi
DEIM Forum 2015 A1-4 305-8573 1-1-1 305-8573 1-1-1 ( ) 151-0051 5-13-18 101-8430 2-1-2,,,, A Complementary Framework for Collecting Know-How Knowledge based on Question-Answer Examples and Search Engine
[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T
LAN Android Transmission-Control Middleware on multiple Android Terminals in a WLAN Environment with consideration of Round Trip Time Ai HAYAKAWA, Saneyasu YAMAGUCHI, and Masato OGUCHI Ochanomizu University
MAC root Linux 1 OS Linux 2.6 Linux Security Modules LSM [1] Security-Enhanced Linux SELinux [2] AppArmor[3] OS OS OS LSM LSM Performance Monitor LSMP
LSM OS 700-8530 3 1 1 [email protected] [email protected] 242-8502 1623 14 [email protected] OS Linux 2.6 Linux Security Modules LSM LSM Linux 4 OS OS LSM An Evaluation of Performance
[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis
1,a) 2 2 2 1 2 3 24 Motion Frame Omission for Cartoon-like Effects Abstract: Limited animation is a hand-drawn animation style that holds each drawing for two or three successive frames to make up 24 frames
The Plasma Boundary of Magnetic Fusion Devices
ASAKURA Nobuyuki, Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193, Japan e-mail: [email protected] The Plasma Boundary of Magnetic Fusion Devices Naka Fusion Research Establishment,
9_18.dvi
Vol. 49 No. 9 3180 3190 (Sep. 2008) 1, 2 3 1 1 1, 2 4 5 6 1 MRC 1 23 MRC Development and Applications of Multiple Risk Communicator Ryoichi Sasaki, 1, 2 Yuu Hidaka, 3 Takashi Moriya, 1 Katsuhiro Taniyama,
非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h
土木学会論文集 B2( 海岸工学 ) Vol. 70, No. 2, 2014, I_016-I_020 非線形長波モデルと流体粒子法による津波シミュレータの開発 Development of a Tsunami Simulator Integrating the Smoothed-Particle Hydrodynamics Method and the Nonlinear Shallow Water
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info
1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3
