a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p"

Transcription

1 a a a a y y ax q y ax q q y ax y ax a a

2 a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

3 y a xp q y a x p q p p x p p q p q y a x xy xy a

4 a a y a x x y a a a y ax bxc y a xp q a b c pq y ax bxc y a xp q abc pq xp xp p y y a a a y ax bxc yx x y ax bxcy a xp q pq

5 ab c x n n n pqpq y ax bxc b

6 xy x x

7 y y

8 a x a

9 a x a x a

10 x

11 x y x x y x xx yx xa xb ab x y x xx a xb a b a

12 b b b b x ab x y xpxq y xpxq yaxpxq pq p q p

13 q a p qx y xpxq yxpxq a p q x p q x a a x p q p q x

14 x D b ac x y ax bxc D yax bxc a b c D yb ac abc D x D x D x y x x D b ac x

15 y x kx x k D x k y ax bx c ax bx c D D ax bx c a b c yx kx k x k

16 y x kxk x k D x D k D k yd D b ac b ac k k k k k y x x D k y x xd

17 k y x xd k y x xd k y x xd k y x xd k y x D k y x xd

18 k D y x kxk k xx y k y x kxk y xk k k kk k y x x y x yx kxk y x kk k k y x

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

憲法h1out

憲法h1out m n mnm mnn m m m m m m. x x x ax bxc a x x bb ac a fxax bxc fxx x ax bxca b ac x x ax bxca x x x.x x x x x x xxx x x xxx x x xxx x x xx x x x axbcxdacx adbcxbd x xxx m n mnm mnn m m m m m m m m

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

中学校学習指導要領解説数学編

中学校学習指導要領解説数学編 20 1 1 3 7 16 16 16 22 31 31 40 67 67 67 77 87 93 98 104 104 109 117 121 124 129 129 140 149 152 155 161 161 163 168 170 -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -16- -17- -18- -19- -20- -21-

More information

xyr x y r x y r u u

xyr x y r x y r u u xyr x y r x y r u u y a b u a b a b c d e f g u a b c d e g u u e e f yx a b a b a b c a b c a b a b c a b a b c a b c a b c a u xy a b u a b c d a b c d u ar ar a xy u a b c a b c a b p a b a b c a

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

1

1 005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

11夏特集号初校.indd

11夏特集号初校.indd 1 2 3 5 50 40 7 6 3 ABC 3 5 A 5% B C 100 3 1 2 3 A 5% 5% 5% B 10% 5% 0% C 20% 10% 15% A 15.8% 15.0% 0.8% B 15.5% 15.0% 0.5% C 12.2% 15.0% 2.8% 2,000 1,500 1,000 500 0 10% 5% 3% 1% 01 5 10 15 20 25 30

More information

1 2 3 4 5 6 X Y ABC A ABC B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 13 18 30 P331 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ( ) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

More information

26 2 3 4 5 8 9 6 7 2 3 4 5 2 6 7 3 8 9 3 0 4 2 4 3 4 4 5 6 5 7 6 2 2 A B C ABC 8 9 6 3 3 4 4 20 2 6 2 2 3 3 4 4 5 5 22 6 6 7 7 23 6 2 2 3 3 4 4 24 2 2 3 3 4 4 25 6 2 2 3 3 4 4 26 2 2 3 3 27 6 4 4 5 5

More information

AC-2

AC-2 AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 AC-9 * * * AC-10 AC-11 AC-12 AC-13 AC-14 AC-15 AC-16 AC-17 AC-18 AC-19 AC-20 AC-21 AC-22 AC-23 AC-24 AC-25 AC-26 AC-27 AC-28 AC-29 AC-30 AC-31 AC-32 * * * * AC-33

More information

エンジョイ北スポーツ

エンジョイ北スポーツ 28 3 20 85132 http://www.kita-city-taikyo.or.jp 85 63 27 27 85132 http://www.kita-city-taikyo.or.jp 2 2 3 4 4 3 6 78 27, http://www.kita-city-taikyo.or.jp 85132 3 35 11 8 52 11 8 2 3 4 1 2 4 4 5 4 6 8

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

DiMAGE Scan Multi PRO

DiMAGE Scan Multi PRO J 9229-2887-26 P-A111 9229-2887-24 X-A110 9229-2887-24

More information

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR () 601 1 () 265 OK 36.11.16 20 604 266 601 30.4.5 (1) 91621 3037 (2) 20-12.2 20-13 (3) ex. 2540-64 - LENCHAR 1 (1) vs. (2) (2) 605 50.2.13 41.4.27 10 10 40.3.17 (a)(c) 2 1 10 (a) (b) (c) 31 2 (a) (b) (c)

More information

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3...........................

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3........................... 24 3 28 : 1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3............................................. 9 5 9 5.1.........................................

More information

- 2 -

- 2 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - A) B) C) D) E) F) - 10 - G) H) I) J) P - 11 - 001 1,416,0003/4 1,062,000 002 100,000 50,00023 1,150,000 2,100,000 200,000+ 100,0000.9 1,600,000 JA

More information

資料2-3 現行学習指導要領における情報に関する主な記述

資料2-3 現行学習指導要領における情報に関する主な記述 4 9 3 1 22 A B C 3 4 1 3 3 4 342C 3 4 C 1 562B 5 6 B 1 3 1 3 5 2 5 4 5 3 54 3 22 5 3 22 1 4 B1 6 B4 1 2 3 4 5 6 2 A1 2 B2 3 3 22 3 5 6 5 6 2 B 1 5 6 B 5 6 1 1 5 6 2 D 1 D 3 5 3 52 3 1 6CDDVD CDDVD 22 2

More information

2002.N.x.h.L.......g9/20

2002.N.x.h.L.......g9/20 1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

22

22 2015 75 7074 6569 2064 26470 21 22 4,060 1,330 23 24 15,000 80 24,600 15,000 15,000 24,600 15,000 24,600 15,000 24,600 37,200 145 520 383 44,400 25 26 280 160280 280 346 160 80 160 37,200 24,600 15,000

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

Microsoft Word - 倫理 第40,43,45,46講 テキスト.docx

Microsoft Word - 倫理 第40,43,45,46講 テキスト.docx 6 538 ( 552 ) (1) () (2) () ( )( ) 1 vs () (1) (2) () () () ) ()() (3) () ( () 2 () () () ()( ) () (7) (8) () 3 4 5 abc b c 6 a (a) b b ()() 7 c (c) ()() 8 9 10 () 1 ()()() 2 () 3 1 1052 1051 () 1053 11

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

16 5 14 12 1 15 3 6 16 5 2 3 16 3 1 11 1.1 11 1.2 12 2 21 2.1 21 2.2 26 2.3 211 2.4 226 3 31 3.1 31 3.1.1 33 3.1.2 39 3.2 311 3.3 313 3.4 315 4 41 4.1 41 4.2 42 4.3 43 4.3.1 44 4.3.2 434 4.3.3 440 4.3.4

More information

R

R R ) R NTN NTN NTN NTN NTN @ 1. 2. 3. CONTENTS 4. 5. 6. NTN NTN NTN 1. NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN 2. L1 4 -M8 230 4 -M10 8-11 175 260 250 150 210 230 Bpx 150 250 210 Bx Bpx

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

DPCはやわかり表紙_2014_H1-H4.indd

DPCはやわかり表紙_2014_H1-H4.indd C O N T E N T S 1 2 3 4 5 6 7 A B AB 15 15 25 2SD 1 1 A B 15 AB 25 2SD 1 1 1 A B 25 2SD 10 10 10 AB 1 1 1 1 A 1 A 1 B1 15 B 2SD 8 9 10 11 12 13 14 15 16 17 18 DPCA DPCA 7 DPCA DPCA 7 DPCA DPCA 7 DPCA DPCA

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

4 1 2 34 56 1

4 1 2 34 56 1 2016 8 2 2 4 1 2 34 56 1 3 2 4 2 78 910 2 1 3 10,000 A 100 A 9,900 9,900 A 100 100 POINT! 4 2 2 2 5 2100 100 3 50 5050100 POINT! 6 3 2 7 ABC 2 10010,0001100 2 100 2 5,000 1 50 32 16,000 13,000 10,000 7,000

More information

54 144 144 144 144 144 80 152 84 122 HTML

54 144 144 144 144 144 80 152 84 122 HTML 54 144 144 144 144 144 80 152 84 122 HTML P20 P24 P28 P40 P54 P84 P122 P138 P144 P152 P220 P234 P240 P242 1 1-1 1-2 1-3 1-4 1-5 1 1-6 1 2 2-1 2-2 A C D E F 2 G H I 2-3 2-4 C D E E A 2

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0..0..........0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0... 0...... 0... 0 0 0 0 0 0..0 0... 0 0 0 0 0.0.....0.

More information

a-b...

a-b... ,,.... a-b... m m, RC..... a-b, ....,. a-b .......... GHQA.. .,., KK... PHP..... .... a VOL............. b a-b . .......... ,, ,,,........... .... ...... . ,....... ......... ........... ........ ,,kg

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

EPSON LP-8900スタートアップガイド

EPSON LP-8900スタートアップガイド 1 2 3 4 5 6 7 8 4020009-01 F04 abc ade abc 1 abc ade 2 ade ade 3 4 w s A B C D E s s s s s s s s s 5 6 s 7 8 s s 9 10 w 700mm 200mm 400mm 878mm 200mm *1 720mm 200mm 1354mm w 11 abc w B A C w 12 D w s

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

2

2 D 1 2 3 XX XY ( ) 4 5 GID ( ) ( ) ( ) ( ) WHO( ) ( ) ( ) WHO ( ) WHO ( ) 6 7 8 9 X Y XX XY XO XXY XXXY Y Y SRY Y SRY X XX XY SRY XY XX Y Y X Y Y DNA DNA 10 XY XY 11 12 13 F M T 14 U H R 15 K N F 16 M T

More information

B's Recorderマニュアル_B's Recorderマニュアル

B's Recorderマニュアル_B's Recorderマニュアル 5 Part 6 - 8 9 - 0 5 A C B AB A B A B C 7-6 - 8 9-5 0 5 7 A D B C E F A B C D F E 6 9 8 0 Part - - 5 5 7 6 9-7 6 8 0 5 5-6 7 9 8 5-5 50 5 5 5 -6 5 55 5 57-7 56 59 8 7 6 58 0 8 9 6 6 7 6 5 60 7 5 6 6-8

More information

B's Recorderマニュアル

B's Recorderマニュアル 2 3 4 5 Part 1 6 1-1 8 9 1-2 10 11 12 13 A B C A C B AB A B 14 15 17 1-4 2 1 16 1-3 18 19 1-5 2 1 20 21 22 23 24 25 A B C D E F A B C D E F 26 27 28 29 30 31 Part 2 32 2-1 2-2 1 2 34 35 5 37 4 3 36 6 2-3

More information

3年間総仕上げ数学.indd

3年間総仕上げ数学.indd 数 と 式 () 学 習 日 月 日 注 00 年 春,0 年 春 に 受 験 する 人 は,この 単 元 を 学 習 する 必 要 はありません 四 則 計 算 の 可 能 性 自 然 数 の 範 囲 加 法 と 乗 法 はいつでもできる が, 減 法 と 除 法 はいつでもできるとは 限 らない 整 数 の 範 囲 加 法, 減 法, 乗 法 はいつでもで きるが, 除 法 はいつでもできるとは

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

ver04__.indd

ver04__.indd practice Digital Camera practice practice practice practice practice practice practice practice practice practice practice practice practice

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

22 2013.11 64 67 70 (1) 71 (2) 72 (3) 74 75 81 85 1 25 27 1 1 2 23 61 27 50 9,000 62 100 2 63 136 3 129 4 110 3 62 2,000 1 400 63 4,000 800 4 4,800 95

22 2013.11 64 67 70 (1) 71 (2) 72 (3) 74 75 81 85 1 25 27 1 1 2 23 61 27 50 9,000 62 100 2 63 136 3 129 4 110 3 62 2,000 1 400 63 4,000 800 4 4,800 95 22 2013.11 SUMMARY 2563 25 7 31 63 22 2013.11 64 67 70 (1) 71 (2) 72 (3) 74 75 81 85 1 25 27 1 1 2 23 61 27 50 9,000 62 100 2 63 136 3 129 4 110 3 62 2,000 1 400 63 4,000 800 4 4,800 950 6 5,000 1,000

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

-2-

-2- -1-2009 3 2 2 HP http://homepage3.nifty.com/office-wada/ -2- -3-1 01 X Y 100 Y Y 02 A B B C A -4- 2 03 X Y Y X XY Y X Y X Y Z XY Z Z X 261 24 14 49 41 77 1 48 6 21 27 6 712 11 1 53 9 14 906 88 X1 X2 X3

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

EPSON LP-S7000 セットアップガイド

EPSON LP-S7000 セットアップガイド h h h h h h h h h h h h h h h abc ade o n A A B o C F D G E o H B G n K I L M I K J o o C A D B E F G h h h h h h h abc ade B ade A C D F E G A C h ade A C D B o ade E G H F G I F J M K N L O A B n C P

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

ver11_001-009_mokuji.indd

ver11_001-009_mokuji.indd 2008 prospect practice practice practice practice Fn F3 Fn F F12 Fn F F2 F3 F4 F5 F7 F8 F9 F10 practice practice yax y a x y yax y a x y yax y x y practice practice

More information

橡魅力ある数学教材を考えよう.PDF

橡魅力ある数学教材を考えよう.PDF Web 0 2 2_1 x y f x y f f 2_2 2 1 2_3 m n AB A'B' x m n 2 1 ( ) 2_4 1883 5 6 2 2_5 2 9 10 2 1 1 1 3 3_1 2 2 2 16 2 1 0 1 2 2 4 =16 0 31 32 1 2 0 31 3_2 2 3_3 3_4 1 1 GO 3 3_5 2 5 9 A 2 6 10 B 3 7 11 C

More information