> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

Save this PDF as:

Size: px
Start display at page:

Download "> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3"

Transcription

1 ( ) ( ) ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275

2 > > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3) D < 0 x ( a ) 276

3 D > 0 D= 0 D < y x x x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3) D < 0 x 277

4 x 2 5x + 6 > 0 x y = x 2 5x + 6 x y x ( ) y = x 2 6x + 5 x 2 x 2 5x + 6 = 0 x = 2, 3 y = x 2 5x + 6 x x y = x 2 5x + 6 x y O 2 3 x x 2 5x + 6 > 0 y y x y x x < 2 3 < x ( x ) x = 2 x = 3 y x < 2 3 < x x 2 2x + 3 > = 0 278

5 y = x 2 2x + 3 x x 2 2x + 3 = 0 x = 3, 1 >= 0 x x x 2 2x + 3 > = 0 3 < = x < = 1 x y > 0 y > = 0 y < 0 y < = 0 x x ( ) x x ( ) 2 ax 2 + bx + c > 0 279

6 3 1 x (1) 2 ax 2 + bx + c = 0 (2) y = ax 2 + bx + c x (3) 122 (1) x 2 2x 8 < 0 (2) x < = 0 (3) x 2 + 2x 4 < = 0 ( ) x x x 2 4x + 4 > 0 y = x 2 4x+4 x 2 4x+4 = 0 x = 2 x y > 0 ( ) x 2 4x + 4 > 0 x = 2 x 2 x < 2 2 < x ( ) 280

7 2 2 x 2 4x + 4 > = 0 x x x = 2 x 2 4x + 4 > = 0 x 2 4x + 4 < = 0 x ( x ) x = 2 ( ) x 2 4x + 4 < = 0 x = 2 x < a ( ) 281

8 x x 2 4x + 4 < 0 x x 2 4x + 4 < 0 x x 2 + x + 1 > 0 x 2 + x + 1 = 0 x = 1 ± 3 2 D y = x 2 + x + 1 x y > 0 x ( ) x 2 + x + 1 > 0 x 2 + x + 1 < 0 y < 0 x x 2 + x + 1 < x 2 + x + 1 > = 0 x 2 + x + 1 < = 0 282

9 2 x 2 x >, <,, 24 x (1) 9x 2 12x + 4 > 0 (2) 2x 2 3x + 6 < = 0 (3) 2x 2 3x + 2 > 0 (4) 2x 2 5x + 3 > = 0 (5) x 2 + 4x 1 < 0 (6) 9x 2 6x + 1 < = { x 2 + x 72 > 0 2x + 3 > = 0 2 < x < 3 x > = 3 2 x 283

10 x 3 2 < = x < 3 2 < x < 3 x > = x 3 2 < = x < 3 ( ) ( ) 40 { x 2 x 6 < 0 x 2 x 2 > = 0 (1) (2) (3) 284

11 2 < x < 3 x < = 1 2 < = x x 2 < x < = 1 2 < = x < 3 ( ) ( ) 125 { x 2 2x 3 < 0 x 2 + x 2 > = x x 2 + (k + 1)x + 2k 1 = 0 k 285

12 x 2 + (k + 1)x + 2k 1 = 0 D D = (k + 1) 2 4(2k 1) D = k 2 6k + 5 D < 0 k 2 6k + 5 < 0 1 < k < 5 ( ) ( ) 126 x 2 2(k + 3)x 4k = 0 k ( D D > 0 ) x 2 + 2mx + m + 2 = 0 m x 2 + ax + 3a = 0, x 2 ax + a 2 1 = 0 a D 1 D 1 0 a 2 12a 0 a 2 4(a 2 1) 0 286

13 2 3 3 a 0 ( ) ( ) 128 x 2 + 2ax 2a = 0, x 2 + (a 1)x + a 2 = 0 a 13.6 ( ) αβ = 0 α = 0 β = 0 ( ) a, b ab > 0 a > 0 b > 0 a < 0 b < 0 ab < 0 a > 0 b < 0 a > 0 b < 0 ab > 0 a > 0 b > 0 a < 0 b < 0 = ab > 0 a a > 0, a = 0, a < 0 a = 0 ab = 0 a > 0 a < 0 ( ) a > 0 1 a > 0 1 ab > 0 1 a 1 a ab > 1 a

14 b > 0 a > 0 b > 0 ( ) a < 0 1 a < a > 0 b < 0 = ( ) a > 0, b > 0 ( ) ab > 0 ( ) a < 0, b < 0 a > 0, b > 0 ( ) ab > 0 66 ab < 0 a > 0 b < 0 a > 0 b < 0 ( ) > =, < = ( ) 67 abc > 0 ( a > 0 a < 0 ) 1 a > 0, 1 a = 0, 1 a < 0 1 a = 0 a 1 = 0 1 a < 0 a 1 < 0 1 a > 0 288

15 x 2 5x + 6 > 0 x 2 5x + 6 (x 2)(x 3) (x 2)(x 3) > 0 x 2 > 0 x 3 > 0 x 2 < 0 x 3 < 0 ( ) x 2 > 0 x 3 > 0 x > 2 x > 3 x > 3 ( ) x 2 < 0 x 3 < 0 x < 2 x < 3 x < 2 x 2 > 0 x 3 > 0 x 2 < 0 x 3 < 0 x < 2 3 < x x 2 2x + 3 > = 0 1 x 2 + 2x 3 < = 0 (x 1)(x + 3) < = 0 x 1 > = 0 x + 3 < = 0 x 1 < = 0 x + 3 > = 0 ( ) x 1 > = 0 x + 3 < = 0 x > = 1 x < = 3 ( ) x ( ) ( ) x 1 < = 0 x + 3 > = 0 x < = 1 x > = 3 3 < = x < = 1 ( α, β ) 289

16 ( ) ax 2 + bx + c ( a > 0) a(x α)(x β) ( α, β α < β ) ax 2 + bx + c > 0 x < α β < x ax 2 + bx + c < 0 α < x < β ax 2 + bx + c > 0 a(x α)(x β) a(x α)(x β) > 0 a > 0 1 a ( ) (x α)(x β) > 0 x α > 0 x β > 0 x α < 0 x β < 0 x > α x > β x < α x < β α < β x > α x > β x > β x < α x < β x < α ax 2 + bx + c > 0 x < α x > β 68 ax 2 + bx + c < 0 α < x < β ( ) (1) a > 0 x 2 1 a (2) ax 2 + bx + c (3) > = ( ) ( ) 290

17 x 2 x + 2 < 0 1 x 2 + x 2 > 0 (x + 2)(x 1) (x + 2)(x 1) > 0 x < 2 1 < x 129 (1) x 2 6x 8 < 0 (2) x < = 0 x 2 4x + 4 > 0 x 2 4x + 4 = (x 2) 2 α, β (x 2) 2 > 0 a a 2 > = 0 a a 2 > = 0 a 2 = 0 a = 0 a a 2 > = 0 a 2 > 0 a 0 (x 2) 2 > 0 x 2 0 x 2 x 2 4x + 4 > = 0 (x 2) 2 > = 0 291

18 x 2 4x + 4 < = 0 (x 2) 2 < = 0 x (x 2) 2 < 0 (x 2) 2 = 0 x = 2 x 2 4x + 4 < 0 (x 2) 2 < 0 69 ( ) ax 2 + bx + c ( a > 0 ) a(x α) 2 α ax 2 + bx + c > 0 x α ax 2 + bx + c < 0 70 >=, < = x 2 + x + 1 > 0 x 2 + x + 1 = 0 x 2 + x + 1 x 2 + x + 1 x 2 + x + 1 = x 2 + x ( = x + 1 ) ( x + 1 ) > 0 ( x + 1 ) > 0 x x 2 + x + 1 > 0 292

19 x 2 + x + 1 < 0 ( x + 1 ) < 0 x 71 x 2 + x + 1 > = 0 x 2 + x + 1 < = 0 72 (1) ( ) ax 2 + bx + c ( a > 0 ) ax 2 + bx + c > 0 ax 2 + bx + c > 0 (2) >=, < = 130 (1) 9x 2 12x + 4 > 0 (2) 2x 2 3x + 6 < = 0 (3) 2x 2 3x + 2 > 0 (4) 2x 2 5x + 3 > = 0 (5) x 2 + 4x 1 < 0 (6) 9x 2 6x + 1 < = ( ) 293

20 abc >

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

Microsoft Word - 倫理 第40,43,45,46講 テキスト.docx

Microsoft Word - 倫理 第40,43,45,46講 テキスト.docx 6 538 ( 552 ) (1) () (2) () ( )( ) 1 vs () (1) (2) () () () ) ()() (3) () ( () 2 () () () ()( ) () (7) (8) () 3 4 5 abc b c 6 a (a) b b ()() 7 c (c) ()() 8 9 10 () 1 ()()() 2 () 3 1 1052 1051 () 1053 11

More information

00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0..0..........0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0... 0...... 0... 0 0 0 0 0 0..0 0... 0 0 0 0 0.0.....0.

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR () 601 1 () 265 OK 36.11.16 20 604 266 601 30.4.5 (1) 91621 3037 (2) 20-12.2 20-13 (3) ex. 2540-64 - LENCHAR 1 (1) vs. (2) (2) 605 50.2.13 41.4.27 10 10 40.3.17 (a)(c) 2 1 10 (a) (b) (c) 31 2 (a) (b) (c)

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

EPSON VP-1200 取扱説明書

EPSON VP-1200 取扱説明書 4020178-01 w p s 2 p 3 4 5 6 7 8 p s s s p 9 p A B p C 10 D p E 11 F G H H 12 p G I s 13 p s A D p B 14 C D E 15 F s p G 16 A B p 17 18 s p s 19 p 20 21 22 A B 23 A B C 24 A B 25 26 p s p s 27 28 p s p

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

1 2 3 4 5 6 X Y ABC A ABC B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 13 18 30 P331 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ( ) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

More information

26 2 3 4 5 8 9 6 7 2 3 4 5 2 6 7 3 8 9 3 0 4 2 4 3 4 4 5 6 5 7 6 2 2 A B C ABC 8 9 6 3 3 4 4 20 2 6 2 2 3 3 4 4 5 5 22 6 6 7 7 23 6 2 2 3 3 4 4 24 2 2 3 3 4 4 25 6 2 2 3 3 4 4 26 2 2 3 3 27 6 4 4 5 5

More information

mogiJugyo_slide_full.dvi

mogiJugyo_slide_full.dvi a 2 + b 2 = c 2 (a, b, c) a 2 a 2 = a a a 1/ 78 2/ 78 3/ 78 4/ 78 180 5/ 78 http://www.kaijo.ed.jp/ 6/ 78 a, b, c ABC C a b B c A C 90 a 2 + b 2 = c 2 7/ 78 C a b a 2 +b 2 = c 2 B c A a 2 a a 2 = a a 8/

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

05[ ]戸田(責)村.indd

05[ ]戸田(責)村.indd 147 2 62 4 3.2.1.16 3.2.1.17 148 63 1 3.2.1.F 3.2.1.H 3.1.1.77 1.5.13 1 3.1.1.05 2 3 4 3.2.1.20 3.2.1.22 3.2.1.24 3.2.1.D 3.2.1.E 3.2.1.18 3.2.1.19 2 149 3.2.1.23 3.2.1.G 3.1.1.77 3.2.1.16 570 565 1 2

More information

/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0

/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0 1. 2018/9/ ) 1) 8 9) 2) 6 14) + 14 ) 1 4 8a 8b) 2 a + b) 4) 2 : 7 = x 8) : x ) x ) + 1 2 ) + 2 6) x + 1)x + ) 15 2. 2018/9/ ) 1) 1 2 2) 4) 2 + 6 5) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x 2 15 12

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

AC-2

AC-2 AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 AC-9 * * * AC-10 AC-11 AC-12 AC-13 AC-14 AC-15 AC-16 AC-17 AC-18 AC-19 AC-20 AC-21 AC-22 AC-23 AC-24 AC-25 AC-26 AC-27 AC-28 AC-29 AC-30 AC-31 AC-32 * * * * AC-33

More information

エンジョイ北スポーツ

エンジョイ北スポーツ 28 3 20 85132 http://www.kita-city-taikyo.or.jp 85 63 27 27 85132 http://www.kita-city-taikyo.or.jp 2 2 3 4 4 3 6 78 27, http://www.kita-city-taikyo.or.jp 85132 3 35 11 8 52 11 8 2 3 4 1 2 4 4 5 4 6 8

More information

JA2008

JA2008 A1 1 10 vs 3 2 1 3 2 0 3 2 10 2 0 0 2 1 0 3 A2 3 11 vs 0 4 4 0 0 0 0 0 3 6 0 1 4 x 11 A3 5 4 vs 5 6 5 1 0 0 3 0 4 6 0 0 1 0 4 5 A4 7 11 vs 2 8 8 2 0 0 0 0 2 7 2 7 0 2 x 11 A5 9 5 vs 3 10 9 4 0 1 0 0 5

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β) 19 7 12 1 t F := t 2 + at + b D := a 2 4b F = 0 a, b 1.1 F = 0 α, β α β a, b /stlasadisc.tex, cusp.tex, toileta.eps, toiletb.eps, fromatob.tex 1 F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

) Binary Cubic Forms / 25

) Binary Cubic Forms / 25 2016 5 2 ) Binary Cubic Forms 2016 5 2 1 / 25 1 2 2 2 3 2 3 ) Binary Cubic Forms 2016 5 2 2 / 25 1.1 ( ) 4 2 12 = 5+7, 16 = 5+11, 36 = 7+29, 1.2 ( ) p p+2 3 5 5 7 11 13 17 19, 29 31 41 43 ) Binary Cubic

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

EPSON LP-8900ユーザーズガイド

EPSON LP-8900ユーザーズガイド 3 4 5 6 7 8 abc ade w p s 9 10 s s 11 p 12 p 13 14 p s 15 p s A B 16 w 17 C p 18 D E F 19 p w G H 20 A B 21 C s p D 22 E s p w 23 w w s 24 p w s 25 w 26 p p 27 w p s 28 w p 29 w p s 30 p s 31 A s B 32

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

指数関数的進化企業に及ぼす弱い連携の影響 日産自動車, 富士フイルム, 川崎重工業のイノベーションの源泉 1 115 12 13 14 15 16 2 21 22 23 24 25 3 31 32 321 322 323 332 4 41 42 43 5-17 - 18 1 115 4 5 9 1 5 5 2 152045 2 3 12015 22015 1000111000 100111200 112

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

2002.N.x.h.L.......g9/20

2002.N.x.h.L.......g9/20 1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

11夏特集号初校.indd

11夏特集号初校.indd 1 2 3 5 50 40 7 6 3 ABC 3 5 A 5% B C 100 3 1 2 3 A 5% 5% 5% B 10% 5% 0% C 20% 10% 15% A 15.8% 15.0% 0.8% B 15.5% 15.0% 0.5% C 12.2% 15.0% 2.8% 2,000 1,500 1,000 500 0 10% 5% 3% 1% 01 5 10 15 20 25 30

More information

III 2017

III 2017 III 2017 0 7 1 2 11 2 1 2.1............................... 1 2.2.................................. 16 n 15.1 n................................ 15.2 de Moivre............................. 15. 1 n.................................

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information