[1] SBS [2] SBS Random Forests[3] Random Forests ii

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "[1] SBS [2] SBS Random Forests[3] Random Forests ii"

Transcription

1 Random Forests A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki

2 [1] SBS [2] SBS Random Forests[3] Random Forests ii

3 Random Forests Random Forests iii

4 ii 1 Random Forests SFS SBS s r SFFS iv

5 v

6 1.1 Random Forests Random Forests Random Forests ( [5] ) Random Forests ( [9] ) Semantic Texton Forests Random Forests ( [8] ) Hough Forests ( [6] ) SFS SBS fold cross-validation Pendigits Waveform Spambase Optdigits vi

7 Random Forests vii

8 1 Random Forests Random Forests 1.1 Random Forests Random Forests Randomized Forests Randomized Trees, Randomized Deicision Forests Random Forests Random Forests Breiman [3] Bagging[4] Random Feature Selection [5] [6] [7] [8] Random Forests Random Forests 1.1 (Split Node) (Leaf Node) 1

9 t 1 t T 1.1: Random Forests Random Forests Require: : I Require: : T Require: : D Require: T : I = (I 1, I 2,..., I T ). Require: : F Require: : T H 1: For k = 1,..., T 2: I k 3: For l = 1,..., F 4: - f 5: - For m = 1,..., T H 6: 7: t f t I l I r 8: - I l = {i I n f(v i ) < t} 9: - I r = I n \ I l 10: E 11: - E = I l I n l) Ir I n r) 12: if E > E old f, t, I l, I r 13: - end for 14: end for 15: if gain = 0 D 16: - P (c l) 17: 18: else I l, I r end for 2

10 1.1. I T D I = (I 1, I 2,..., I T ) F T H F,T H f t f t Random Feature Selection F T H F T H E E n I n f t 1.1, (1.2) I l I r I l = {i I n f(v i ) < t} (1.1) I r = I n \ I l (1.2) I l I r (1.3) E E = E(I) I l I n E(I l) I r I n E(I r) (1.3) E(I) (1.4)( ) (1.5)( ) E(I) = n p(c i ) log p(c i ) (1.4) i=1 E(I) = n p(c i )(1 p(c i )) (1.5) i=1 p(c i ) c i ( ) 0 l P (c l) 3

11 v P (c l) (P 1 (c l), P 2 (c l),..., P T (c l)) P (c v) P (c v) = 1 T T P t (c l) (1.6) t=1 C i = arg max c i P (c i v) (1.7) 1.2: Random Forests 4

12 Random Forests Amit 1.3(a) Random Forests 1.3(b) [5] 1.3: Random Forests ( [5] ) Lepetit 1.4 Random Forests [9] 5

13 1.3. 応用例 (a) パッチを学習した RTs (b) 射影変化に頑健な結果 図 1.4: Random Forests を用いた特徴点マッチング (文献 [9] より引用) Shotton 等は図 1.5 に示すように画像パッチを Semantic Texton Forests Features 特徴 量を用いて Random Forests により学習する Semantic Texton Forests を提案した [7] Semantic Texton Forests は Moosmann 等の手法と同様に ノードを visual word とする ことにより 特徴表現を行うことができ これを用いてセマンティックセグメンテーショ ン 画像識別が可能であることを実験により示している 正解画像 A[g] -B[b] > 28 入力画像 A[b] -B[g] > 37 A[r] + B[r] > 363 A[b] + B[b] > 284 A[g] -B[b] > 13 画像パッチ A[b] > 98 A[r] -B[b] > 21 図 1.5: Semantic Texton Forests 6

14 1.3. Shotton 1.6 Random Forests [8] CG 31 2 Random Forests 3 1.6: Random Forests ( [8] ) Gall 1.7 Hough image Hough Forests [6] Hough image Hough Forests 1.7: Hough Forests ( [6] ) 7

15 1.3. [7] [5] [9] [8] [6] 8

16 2 2.1 n d SFS SBS s r SFFS 9

17 n d n C d n d [10] d [10] 2.1 v 1, v 2, v 3 2.1: [%] v 1 7 v 2 14 v 3 21 (v 1, v 3 ) 4 (v 1, v 2 ) SFS Whiteney (Sequential Forward Selection)[11] SFS

18 d v 1,v,...,v 2 n v 1 v 2 v n max v,v,...,v 1 3 n 2.1: SFS SBS SFS Marill (Sequential Backward Selection)[2] SBS

19 2.1. v,v,...,v 1 2 n v,v,...,v v,v,...,v v,v,...,v 2 3 n 1 3 n 1 2 n-1 max v 1,v 3,...,vn v2 2.2: SBS s r Stearns s r [12] SFS SBS k X k 1. X k+s X k SFS s 2. X k+s r X k+s SBS r 3. d = k + s r 1 2 s > r s = 2, r = 1 s r s r s = 1, r = 0 SFS s = 0, r = 1 SBS 12

20 SFFS Pudil SFFS (Sequential Floating Forward Selection)[13] s r s, r SFFS k = 0 1. SFS k k k SBS k = d 1 SFFS SFS SBS 13

21 3 Random Forests 3.1 Random Forests Random Forests C(v d ) (3.1) C(v d ) j d v d S d S (3.1) d 14

22 3.1. v d j T S d S C(v d ) = T t=1 j f(v d ) S t,j j J S t,j 100 (3.1) f(v d ) f (v ) d I n y f (v d ) x I l I r 3.1: 3.2 t 1 t 1 t 1 t 1 v 1 v 2 v 3 v 4 v 5 v 6 C(v 2 ) t 1 v 1 v 2 v 3 v 4 v 5 v 6 C(v 4 ) t 1 v 1 v 2 v 3 v 4 v 5 v 6 3.2: 15

23 Random Forests : Random Forests

24 : 17

25 SBS(Sequential Backward Selection) 10% UCI Machine Learning Repository[14] UCI Machine Learning Repository UCI Machine Learning Repository Pendigits, Waveform, Spambase, Optdigits

26 : Pendigits Waveform Spambase Optdigits Random Forests : Random Forests Pendigits Waveform Spambase Optdigits cross-validation [15] Seymour Geisser K-fold cross-validation K-fold cross-validation N K K K 1 K-fold cross-validation K 19

27 4.2. K K N K 3 3-fold cross-validation 3-fold cross-validation : 3-fold cross-validation SBS 10% 4.2, 4.3, 4.4, 4.5 SBS SBS 20

28 : Pendigits 4.3: Waveform 21

29 : Spambase 4.5: Optdigits 22

30 % : SBS [ ] [ ] [ ] Pendigits (16) Waveform (21) Spambase (57) Optdigits (64) SBS 3 10% : 23

31 4.2. Pendigits SBS 9 Pendigits 38 SBS SBS 24

32 Random Forests 1 Random Forests Random Forests 2 3 Random Forests 2 4 SBS Spambase Optdigits 25

33 SBS SFS 26

34 27

35 [1] vol. 48, no. 16, pp. 1-24, [2] Marill, T, D. M. Green, On the effectiveness of receptors in recognition system, IEEE Trans. Inform. Theory 9, pp , [3] L. Breiman, Random Forests, Machine Learning, vol. 45, no. 1, pp. 5-32, [4] L. Breiman, Bagging Predictors, Machine Learning, vol. 24, no. 2, pp , [5] Y. Amit, G. August and D. Geman: Shape quantization and recognition with randomized trees, Neural Computation, no. 9, pp , [6] Gall, J. and Yao, A. and Razavi, N. and Van Gool, L. and Lempitsky, V., Hough forests for object detection, tracking, and action recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp , [7] J. Shotton, M. Johnson and R. Cipolla, Semantic texton forests for image categorization and segmentation, Computer Vision and Pattern Recognition, [8] J. Shotton,and A. Fitzgibbon, and Cook, M. and Sharp, T. and Finocchio, M. and Moore, R. and Kipman, A. and Blake, A., Real-time human pose recognition in parts from single depth images, Computer Vision and Pattern Recognition, [9] V. Lepetit and p. Fua, Keypoint recognition using randomized trees, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp ,

36 [10],, pp [11] Whitney, A. W, A direct method of nonparametric measurement selection, IEEE Trans. Comput.20,pp , [12] S. D. Stearns: On selecting features for pattern classifies, Proc. Third Internat. Conf. Pattern Recognition, pp , [13] P. Pudil, J. Novovicora and J. Kittler: Floating search methods in feature selection, Pattern Recognition Letters, Vol. 15, No. 11, pp , [14] UCI Machine Learning Repository, [15] Kohavi, Ron: A study of cross-validation and bootstrap for accuracy estimation and model selection,

37 Random Forests ( )

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

ii

ii I05-010 : 19 1 ii k + 1 2 DS 198 20 32 1 1 iii ii iv v vi 1 1 2 2 3 3 3.1.................................... 3 3.2............................. 4 3.3.............................. 6 3.4.......................................

More information

入門ガイド

入門ガイド ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

ÿþ

ÿþ I O 01 II O III IV 02 II O 03 II O III IV III IV 04 II O III IV III IV 05 II O III IV 06 III O 07 III O 08 III 09 O III O 10 IV O 11 IV O 12 V O 13 V O 14 V O 15 O ( - ) ( - ) 16 本 校 志 望 の 理 由 入 学 後 の

More information

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2 Curved Document Imaging with Eye Scanner Toshiyuki AMANO, Tsutomu ABE, Osamu NISHIKAWA, Tetsuo IYODA, and Yukio SATO 1. Shape From Shading SFS [1] [2] 3 2 Department of Electrical and Computer Engineering,

More information

色の類似性に基づいた形状特徴量CS-HOGの提案

色の類似性に基づいた形状特徴量CS-HOGの提案 IS3-04 第 18 回 画 像 センシングシンポジウム, 横 浜, 2012 年 6 月 CS-HOG CS-HOG : Color Similarity-based HOG feature Yuhi Goto, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University E-mail: yuhi@vision.cs.chubu.ac.jp Abstract

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o 78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o

More information

SICE東北支部研究集会資料(2013年)

SICE東北支部研究集会資料(2013年) 280 (2013.5.29) 280-4 SURF A Study of SURF Algorithm using Edge Image and Color Information Yoshihiro Sasaki, Syunichi Konno, Yoshitaka Tsunekawa * *Iwate University : SURF (Speeded Up Robust Features)

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, ryo-f@hiroshima-cu.ac.jp, fukuda@cv.ics.saitama-u.ac.jp,

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7

More information

aca-mk23.dvi

aca-mk23.dvi E-Mail: matsu@nanzan-u.ac.jp [13] [13] 2 ( ) n-gram 1 100 ( ) (Google ) [13] (Breiman[3] ) [13] (Friedman[5, 6]) 2 2.1 [13] 10 20 200 11 10 110 6 10 60 [13] 1: (1892-1927) (1888-1948) (1867-1916) (1862-1922)

More information

untitled

untitled 2007 55 2 255 268 c 2007 2007 1 24 2007 10 30 k 10 200 11 110 6 60 3 1. 1 19 Mendenhall 1887 Dickens, 1812 1870 Thackeray, 1811 1863 Mill, 1806 1873 1960 610 0394 1 3 256 55 2 2007 Sebastiani 2002 k k

More information

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means Web, Web k-means 62% Associating Faces and Names in Web Photo News Akio Kitahara and Keiji Yanai We propose a system which extracts faces and person names from news articles with photographs on the Web

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

1 10 200 15 20 50 (1) (2) 45 A4 JICA 15 WS 1 [] a. b. 10 A 30 15 15 NGO PC 5 15 15 15 15 NGO 1948 1970 10 NGO 90 AB 40 40 WS 1 NGO 40 WS Q 43 63 73 15 9 8 5 5 4 63 17 9 8 6 6 4 2000 14 15 100 2000 1

More information

III

III III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2

More information

iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7

More information

: W, k : C 1,, C k 1. W D ii = j W ij D 2. W, D L = I D 1/2 W D 1/2 L 3. L, k U 4. U k-means C 3: 2: 3. ( ) k-means 10 1 0 688 3.1 HITS k-means k-mean

: W, k : C 1,, C k 1. W D ii = j W ij D 2. W, D L = I D 1/2 W D 1/2 L 3. L, k U 4. U k-means C 3: 2: 3. ( ) k-means 10 1 0 688 3.1 HITS k-means k-mean 人 工 知 能 学 会 研 究 会 資 料 SIG-FIN-013-07 Attempt Diversification by Clustering of Investment Trusts 1 Takumasa Sakakibara 2 Tohgoroh Matsui 1 Atsuko Mutoh 1 Nobuhiro Inuduka 1 Department of Computer Science

More information

untitled

untitled I...1 II...2...2 III...3...3...7 IV...15...15...20 V...23...23...24...25 VI...31...31...32...33...40...47 VII...62...62...67 VIII...70 1 2 3 4 m 3 m 3 m 3 m 3 m 3 m 3 5 6 () 17 18 7 () 17 () 17 8 9 ()

More information

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem 1 1 1 Posture Esimation by Using 2-D Fourier Transform Yuya Ono, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

光学

光学 Fundamentals of Projector-Camera Systems and Their Calibration Methods Takayuki OKATANI To make the images projected by projector s appear as desired, it is e ective and sometimes an only choice to capture

More information

untitled

untitled K-Means 1 5 2 K-Means 7 2.1 K-Means.............................. 7 2.2 K-Means.......................... 8 2.3................... 9 3 K-Means 11 3.1.................................. 11 3.2..................................

More information

四校_目次~巻頭言.indd

四校_目次~巻頭言.indd 107 25 1 2016 3 Key Words : A 114 67 58.84 Mann-Whitney 6 1. 2. 3. 4. 5. 6. I. 21 4 B 23 11 1 9 8 7 23456 108 25 1 2016 3 78 9 II. III. IV. 1. 24 4 A 114 2. 24 5 6 3. 4. 5. 3 42 5 16 6 22 5 4 4 4 3 6.

More information

M41 JP Manual.indd

M41 JP Manual.indd i ii iii iv v vi vii 1 No / A-B EQ 2 MIC REC REC00001.WAV Stereo CH:01 0:00:00 1:50:00 3 4 5 6 7 8 9 10 11 12 1 1 F F A A 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Φ 35 36 37 38

More information

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F( Vol1-CVIM-172 No.7 21/5/27 1 Proposal on Ringing Detector for Image Restoration Chika Inoshita, Yasuhiro Mukaigawa and Yasushi Yagi 1 A lot of methods have been proposed for restoring blurred images due

More information

3: 2: 2. 2 Semi-supervised learning Semi-supervised learning [5,6] Semi-supervised learning Self-training [13] [14] Self-training Self-training Semi-s

3: 2: 2. 2 Semi-supervised learning Semi-supervised learning [5,6] Semi-supervised learning Self-training [13] [14] Self-training Self-training Semi-s THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 599-8531 1-1 E-mail: tsukada@m.cs.osakafu-u.ac.jp, {masa,kise}@cs.osakafu-u.ac.jp Semi-supervised learning

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

86 7 I ( 13 ) II ( )

86 7 I ( 13 ) II ( ) 10 I 86 II 86 III 89 IV 92 V 2001 93 VI 95 86 7 I 2001 6 12 10 2001 ( 13 ) 10 66 2000 2001 4 100 1 3000 II 1988 1990 1991 ( ) 500 1994 2 87 1 1994 2 1000 1000 1000 2 1994 12 21 1000 700 5 800 ( 97 ) 1000

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

CRS4

CRS4 I... 1 II... 1 A... 1 B... 1 C... 1 D... 2 E... 3 III... 3 A... 3 B... 4 C... 5 IV... 8 A... 8 B... 8 C... 9 D... 10 V... 11 A... 11 B... 11 C... 12 VI... 12 A... 12 B... 12 C... 12 VII... 13 ii I II A

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) ii iii iv NEC Corporation 1998 v vi PA RT 1 vii PA RT 2 viii PA RT 3 PA RT 4 ix P A R T 1 2 3 1 4 5 1 1 2 1 2 3 4 6 1 2 3 4 5 7 1 6 7 8 1 9 1 10 1 2 3 4 5 6 7 8 9 10 11 11 1 12 12 1 13 1 1 14 2 3 4 5 1

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3 3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22

More information

untitled

untitled 23 12 10 12:55 ~ 18:45 KKR Tel0557-85-2000 FAX0557-85-6604 12:55~13:00 13:00~13:38 I 1) 13:00~13:12 2) 13:13~13:25 3) 13:26~13:38 13:39~14:17 II 4) 13:39~13:51 5) 13:52 ~ 14:04 6) 14:05 ~ 14:17 14:18 ~

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

2797 4 5 6 7 2. 2.1 COM COM 4) 5) COM COM 3 4) 5) 2 2.2 COM COM 6) 7) 10) COM Bonanza 6) Bonanza 6 10 20 Hearts COM 7) 10) 52 4 3 Hearts 3 2,000 4,000

2797 4 5 6 7 2. 2.1 COM COM 4) 5) COM COM 3 4) 5) 2 2.2 COM COM 6) 7) 10) COM Bonanza 6) Bonanza 6 10 20 Hearts COM 7) 10) 52 4 3 Hearts 3 2,000 4,000 Vol. 50 No. 12 2796 2806 (Dec. 2009) 1 1, 2 COM TCG COM TCG COM TCG Strategy-acquisition System for Video Trading Card Game Nobuto Fujii 1 and Haruhiro Katayose 1, 2 Behavior and strategy of computers

More information

(b) BoF codeword codeword BoF (c) BoF Fergus Weber [11] Weber [12] Weber Fergus BoF (b) Fergus [13] Fergus 2. Fergus 2. 1 Fergus [3]

(b) BoF codeword codeword BoF (c) BoF Fergus Weber [11] Weber [12] Weber Fergus BoF (b) Fergus [13] Fergus 2. Fergus 2. 1 Fergus [3] * A Multimodal Constellation Model for Generic Object Recognition Yasunori KAMIYA, Tomokazu TAKAHASHI,IchiroIDE, and Hiroshi MURASE Bag of Features (BoF) BoF EM 1. [1] Part-based Graduate School of Information

More information

NordLead2X

NordLead2X I II III IV V VI VII 1 2 3 4 5 6 7 8 9 10 11 12 13 L1 L2 FN O2 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 FM Mix 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

長崎県地域防災計画

長崎県地域防災計画 i ii iii iv v vi vii viii ix - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - 玢 - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - -

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

S: E: O: C: V : 5

S: E: O: C: V : 5 ( ) 2004 1 S: E: O: C: V : 5 1 1 2 2 2.1.................................... 2 2.2........................ 2 2.3........................... 3 3 7 3.1.................................... 7 3.2....................................

More information

松竹映画ファンド重要事項説明書

松竹映画ファンド重要事項説明書 2004 11 30 2004 11 2005 2 1 2004 11 30 1. IV. (5) 26 10 10,000 1,350 2,625 232,025 133,006 9,500 1,320 2,520 224,005 131,001 9,000 1,290 2,415 215,985 128,996 8,500 1,260 2,310 207,965 126,991 8,000 1,230

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

ONLINE_MANUAL

ONLINE_MANUAL JPN ii iii iv v 6 vi vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 4 5 1-3 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5

More information

ONLINE_MANUAL

ONLINE_MANUAL JPN ii iii iv v vi 6 vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 1-3 4 5 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5

More information