DVIOUT-マスタ-
|
|
|
- しまな たかひ
- 7 years ago
- Views:
Transcription
1 L A TEX T.T TEX TEX 1 TEX TEX Donald E. Knuth tex 2 L A TEX TEX LATEX( DEC Leslie Lamport TEX TEX 3 L A TEX 3.1 L A TEX documentclass[]{} begin{document} end{document} LATEX
2 3.1.1 documentclass[a4paper,twocolumn,11pt]{jarticle} a4paper,twocolumn,11pt A4 (a4paper twocolumn 11 11ptB4 b4paperb5 b5paper landscape jarticle jreportjbook pagestyle{plain} pagestyle{empty} topmargin -3cm textheight 33.5cm textwidth 45zw 1zw 3.2 L A TEX begin{}... end{}enviroment) begin{center}... end{center} center begin{} end{} flushright flushleft center enumerate enumerate begin{enumerate} item item item end{enumerate}
3 3.2.2 enumerate begin{enumerate} item begin{enumerate} item item item end{enumerate} item item 10end{enumerate} 1. (a) (b) (c) L A TEX tabular begin{tabular}{} & & & & & & end{tabular} r c l tabular begin{tabular}{lcr} & & & & end{tabular} hline
4 3.3.2 tabular begin{tabular}{ l c r } hline & & hline & & hline end{tabular} tabular multicolumn begin{tabular}{ l c r } hline multicolumn{3}{ c }{} hline & & hline & & hline end{tabular} tabtopsp newcommand{tabtopsp}[1]{vbox{vbox to#1{}vbox to1zw{}}} begin{tabular}{ l c r } hlinetabtopsp{3mm}%% & & [3mm] hlinetabtopsp{3mm}%% & & [1.5mm] hline end{tabular}
5 3.4 graphics graphicx graphicx graphics graphicx usepackage{garaphicx} figure figure begin{figure}[htbp] (includegraphics[width=,height=]{}) caption{} end{figure} minipage minipage begin{minipage}[]{ ()} end{minipage} Mathematica PostScript 1: y = x 2 2x 3 2: y = x 3 + 3x 2 9x 11 3: y = 3 x y = 3 x 4: z = sin xy 5: y = sin x, y = sin 2x 6:
6 3.5 "$" t: quad (, 1 6 ) $frac{1}{x+1}$ 1 x+1 diplaystyle $diplaystyle frac{1}{x+1}$ 1 diplaystyle x + 1 diplaystyle everymath{displaystyle} x 3 + x 2 z xy 2 y 2 z :$x^3+x^2z-xy^2-y^2z$ :$sqrt{2}$ :$[3]sqrt{2}$ 2 2x 1 :$2^{2x-1}$ a 2 3 :$a^frac{2}{3}$ 1 (2x + 1) :$\_frac{1}{3}(2x+1)$ 3 a 1 + a 2 + a a n :$a_1+a_2+a_3+cdots +a_n$ 1 :$frac{1}{1cdot 2}$ 1 2 µ 1 n :$left(frac{1}{2}right)^n$ 2 ~a :$vec{a}$ OA :$overrightarrow{oa}$ nx (2k + 1) :$sum_{k=1}^{n} (2k+1)$ k=1 lim h 0 Z b a h 2 + 2h h f(x) dx :$lim_{h \to 0}{frac{h^2+2h}{h}$ :$int_a^b f(x),dx$
7 3.5.3 mathstrut $overrightarrow{mathstrut a}$ $overrightarrow{mathstrut OA}$ $sqrt{mathstrut x}+sqrt{mathstrut y}$ a OA p x + p y 3 2 leftroot{-2}uproot{4} math unit $sqrt[leftroot{-2}uproot{4}3]{2}$ fbox{ } { } framebox{ }{ }{ } r c l framebox[5cm][c]{ } {setlength{fboxsep}{0.3cm}fbox{}} {setlength{fboxsep}{0.3cm}framebox[5cm][c]{}}
8 3.6 L A TEX L A TEX L A TEX (%) documentclass[a4paper,11pt]{jarticle} pagestyle{plain} topmargin -3cm textheight 33.5cm textwidth 45zw oddsidemargin -1cm LATEX usepackage{ascmac} usepackage{amssymb} usepackage{amsmath} usepackage{euler} fonteuex=euex10 defvint{mathop{vcenter{hbox{euexchar 132}}}nolimits} defvsmallint{mathop{vcenter{hbox{euexchar 122}}}nolimits} everymath{displaystyle} newcommand{ka}{{setlength{fboxsep} {0.09cm}framebox[0.45cm]{}}} newcommand{nkakko}{{raisebox{6pt}{setlength{fboxsep}%sekibun.03 {0.25cm}framebox[0.4cm]{}}}} newcommand{mkakko}{{ {raisebox{4pt}{setlength{fboxsep}%sekibun.03 {0.1cm}framebox[0.25cm]{}}}}} newcommand{kkakko}{{setlength{fboxsep} {0.18cm}framebox[0.65cm]{}}} deffbox#1{setlength{fboxsep}{0.12cm}fbox{#1}} defffbox#1{setlength{fboxsep}{0.3cm}fbox{#1}} deffparbox#1#2{fbox{parbox{#1}{#2}}}
9 defvec#1{overrightarrow{mathstrut #1}} defsqrt#1#2{sqrt[leftroot{-2}uproot{4}#1]{#2}} deflim#1#2#3{lim_{#1 to #2}#3} defint#1{int #1,dx} deftint#1#2#3{int _#1^#2 #3,dx} defseki#1#2#3{biggl[#1biggr]_#2^#3} defbseki#1#2#3{left[#1right]_#2^#3} newcommand{tabtopsp}[1]{vbox{vbox to#1{}vbox to1zw{}}} %% 1 defhyou#1#2{ begin{tabular}{c l c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]} %% 2 deflhyou#1#2{ begin{tabular}{c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]} %% 3 defhyou#1#2{ begin{tabular}{c l c l c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]}
10 defmidasi#1{ hspace{0.5cm}textbf{large #1} hspace{2cm}( ) $cdot $ ( ) ()NO} title{textbf{latex }} author{ T.T} date{} ken01.tex,ken02.tex input{ken01}.tex %%%%%% TEXT START %%%%%% begin{document} maketitle input{ken01} input{ken02} input{ken03} input{ken04} input{ken05} input{ken06} input{mokuji} end{document} newcommand newcommand{ }{ } newcommand{ka}{{setlength{fboxsep}{0.09cm}framebox[0.45cm]{}}} ka def def{ }{ } deftint#1#2#3{int _#1^#2 #3,dx} $Tint{a}{b}{f(x)}$ Z b a f(x) dx tableofcontents L A TEX
11 3.6.5 ( ) ( ) ()NO f(x) x = a = 0 f 0 (a) =0 f(x) y = x 3 3x 2 + 3x + 1 y 0 = = 3 () y 0 = 0 x = x y 0 y y = x 3 + 6x x + 5 y 0 = = 3 () y 0 = 0 x = x y 0 y y = x y 0 = y 0 = 0 x = x y 0 y L A TEX midasi{} begin{minipage}[t]{13cm] begin{shadebox} $f(x)$$x=a$ Fbox{},$=0$[1mm] $f (a)=0$, $f(x)$, Fbox{}Fbox{} end{shadebox} end{minipage}[2mm] fparbox{13cm}{ $y=x^3-3x^2+3x+1$[1mm] $y =$Fbox{}$ =,3,Fbox{()}^mkakko $[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y} }[5mm] $y=x^3+6x^2+12x+5$[1mm] $y =$Fbox{}$ =,3,Fbox{()}^mkakko $[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y} [1mm] $y=-x^3+2$[1mm] $y =$Fbox{}[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y}
12 3.6.6 ( ) ( ) ()NO a R = a, b, R a 6= 1, b 6= 1 a>0,a6= 1, R > 0, S > 0 p R a RS = a a R p = S = a a = a a r = a 1 = a 1 a = (3) 10 (1) = 3 4 = = = (2) 8 16 = = = (2) 4 2 = = 1 = (1) = 2 3 = = = (2) = = = (3) 4 32 (4) 13 9 (5) (6) 2 4 (7) L A TEX midasi begin{minipage}[t]{15.5cm} begin{shadebox} $_a R=FFbox{}$$a,b,R $$aneq1,bneq1 $[3mm] $a>0,aneq1,r>0,s>0$p [1mm] $_ars=$fbox{} $_a{frac{r}{s}}=$fbox{}[1mm] $_ar^p=$fbox{}[1mm] $_a a=fbox{} $$_a a^r=fbox{} $$_a 1=Fbox{} $ $_a frac{1}{a}=fbox{} $ end{shadebox} end{minipage}[3mm] fparbox{15cm}{textbf{} textbf{(3) } $Rightarrow $ 10 }[2mm] [1mm] (1) $_3 4 cdot _4 9=_3 4times frac{_{ mkakko} ka}{_{ mkakko} ka}=_{ mkakko}ka=$ $_{ mkakko}ka^{,mkakko}=ka$[1mm] (2) $_8 16=frac{_{ mkakko} ka}{_{ mkakko} ka}=$ $frac{_{ mkakko}ka^{,mkakko}} {_{ mkakko}ka^{,mkakko}}=kkakko$[1mm] (2) $_4 2=frac{_{ mkakko} ka}{_{ mkakko} ka}=$ $frac{1}{_{ mkakko}ka^{,mkakko}}=kkakko$[1mm] [1mm] (1) $_2 3 cdot _3 8=_2 3times frac{_{ mkakko} ka}{_{ mkakko} ka}=_{ mkakko}ka=$ $_{ mkakko}ka^{,mkakko}=ka$[1mm] (2) $_{,sqrt{3}}frac{1}{9}=$ $frac{_{ mkakko}kkakko}{_{ mkakko}ka}= frac{_{ mkakko}ka^{ mkakko}}{ kkakko,_{ mkakko}ka}$ $=Fbox{} $[2mm] (3) $_4 32 $ (4) $_{ frac{1}{3}} 9$ (5) $_{0.5} {sqrt{32}} $ (6) $_{sqrt{2}} 4 $ (7)$\_2 9 cdot _3 5 cdot _{25} 8$
13 3.6.7 P AB ( ) ( ) ()NO ABCD CD 2:1 E BD 3:1 P P AE [] = AB = AD AC = CE : ED = : AE = = = BP : PD = : AP = = AP = AE P AE ABCD CD 3:1 E BD 4:1 P P AE ABCD AB 2:1 P BD 1:3 Q a = BA c = BC 1. BP, BQ a, c 2. PQ, PC a, c ( PQ = BQ BP PC = BC BP) 3. P, Q, C L A TEX midasi{} begin{minipage}[t]{12cm} begin{shadebox} $P $$AB $$iff $Fbox{} end{shadebox} end{minipage}[0.5cm] ABCD CD 2:1 E BD 3:1 P P AE [] [1mm] Fbox{}$ =Vec{AB} $Fbox{}$ =Vec{AD} $ $Vec{AC}= $Fbox{}[1mm] $CE:ED= $Fbox{:}[1mm] $Vec{AE}= $ FFbox{} $ = FFbox{} = FFbox{}$[1mm] $BP:PD= $Fbox{:}[1mm] $Vec{AP}= FFbox{} = FFbox{}$ $Vec{AP} = FFbox{} Vec{AE}$[1mm] P AE [2mm] ABCD CD 3:1 E BD 4:1 P P AE [4cm] ABCD AB 2:1 $P $ BD 1:3 Q $Vec{a}=Vec{BA}Vec{c}=Vec{BC} $ begin{enumerate} item $Vec{BP},Vec{BQ} $$Vec{a},Vec{c} $[1cm] item $Vec{PQ},Vec{PC} $$Vec{a},Vec{c} $[1mm] $(Vec{PQ}=Vec{BQ}-Vec{BP} $$Vec{PC}=Vec{BC}-Vec{BP}) $[1cm] item $P,Q,C $ end{enumerate}
14 3.6.8 f(x) F(x) Z b b f(x) dx = F(x) = a a ( ) ( ) ()NO Z 2 (x 2 2x + 3) dx 1 Z 2 (x 2 2x + 3) dx = = = 1. Z 2 Z 2 Z 1 (1) 3dx (2) (3x 2) dx (3) (3x 2 + 2x 1) dx Z 1 Z 2 Z 3 (4) (x 2 x + 2) dx (5) (x 1)(x 2) dx (6) (t 2 3t + 5) dt Z 3 x 1 dx 0 Z 3 Z Z x 1 dx = x 1 dx + 0 x 1 dx = Z (x 1) dx Z (x 1) dx = = 2. Z 3 Z 3 (1) x 2 dx (2) x 2 4x dx 0 1 Z b Z b f(x) 0 y = f(x) x x = a, x = b f(x) dx = ydx a a 3. x (1) y = x 2 + 3, x = 3, x = 1 (2) y = 2x 2 x + 3, x = 2, x = 5 LATEX midasi{} begin{minipage}[t]{6cm} begin{shadebox} $f(x)$$f(x)$ $Tint{a}{b}{f(x)}=seki{F(x)}{a}{b}=Fbox{}-Fbox{}$ end{shadebox} end{minipage}[2mm] fparbox{13.5cm}{, $Tint{{-1}}{2}{(x^2-2x+3)}$ $Tint{{-1}}{2}{(x^2-2x+3)}=$ [1mm] $seki{frac{quad,ka^mkakko}{ka}-ka^mkakko+3,ka }{{-1}}{2}$ $=left(frac{ka^3}{3}-ka^2+3cdot ka right)-$ $left(frac{ka^3}{3}-ka^2+3cdot ka right)=ka $} begin{enumerate} item begin{tabular}{lll} (1),$Tint{1}{2}{3}$hspace*{1.5cm} & (2),$Tint{0}{2}{(3x-2)}$hspace*{1cm} & (3),$Tint{0}{1}{(3x^2+2x-1)}$[1cm] (4),$Tint{{-2}}{1}{(x^2-x+2)}$ & (5),$Tint{1}{2}{(x-1)(x-2)}$ & (6),$int _0^3 (t^2-3t+5),dt$[1cm] end{tabular} fparbox{13.5cm}{, $Tint{0}{3}{ x-1 }$ $Tint{0}{3}{ x-1 }=Tint{mkakko}{mkakko}{ x-1 }+Tint{mkakko}{mkakko}{ x-1 }=$ $ka,tint{mkakko}{mkakko}{(x-1)} ka,tint{mkakko}{mkakko}{(x-1)}$[2mm] $=,ka,seki{}{mkakko}{mkakko}$ $ ka,seki{}{mkakko}{mkakko}=ka$} item (1),$Tint{0}{3}{ x-2 }$hspace*{4cm} (2),$Tint{{-1}}{3}{ x^2-4x }$[3cm] fparbox{13.5cm}{$f(x) eq 0$ $y=f(x)$$x$$x=a,x=b$ $Tint{a}{b}{f(x)}=Tint{a}{b}{y}$} item,$x$ (1),$y=x^2+3,x=-3,x=1$hspace*{2.5cm}(2),$y=2x^2-x+3,x=2,x=5$ end{enumerate}
15 1 TEX 1 2 L A TEX TEX 1 3 L A TEX L A TEX L A TEX enumerate enumerate LATEX tabular tabular tabular figure minipage { } LATEX newcommand def
semi4.dvi
1 2 1.1................................................. 2 1.2................................................ 3 1.3...................................................... 3 1.3.1.............................................
tex03final1.dvi
2002 3 L A TEX 2002 4 20 : TEX dvi PDF mikilab 1 L A TEX 1.1 Table 1.1 Table 1 1 1400 1 1700 Fig. 1 \begin{tabular}{ ()}. Fig. 2 tabular Table 2 tabular l c r \begin{center} \begin{tabular}{lcr} & & \\
4.4... 17 4.5... 18 4.6... 18 4.7 sin log lim... 18 5 19 6 20 6.1... 20 6.2... 21 7 22 7.1... 22 7.2... 23 8 Deutsch 24 9 24 1 Hello, TEX World! 1.1 T
-platex2 by MiYaGG 1 Hello, TEX World! 2 1.1 TEX... 2 1.2 pl A TEX2... 3 1.3 TEX... 4 1.4 TEX... 4 1.5 To err is human......... 6 1.6 UNIX... 6 2 7 2.1... 7 2.2... 8 2.3... 8 2.4... 9 2.5... 10 2.6...
1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1
ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD
tex02.dvi
2002 2 L A TEX 2002 4 15 : L A TEX EPS EPS 1 L A TEX L A TEX L A TEX L A TEX 1.1 L A TEX 1.1.1 L A TEX TEX.tex.tex.tex 1.1.2 TEX 1. TEX L A TEX Y TEX L A TEX Y (@ ) TEX L A TEX 2. 1 YTeX YTeX ( ) 3. 2
電気通信大学 コンピュータリテラシー 文書整形 --- LaTeX ---
1 L A TEX B5 1. LaTeX ( ) : 1 3 2. LaTeX ( ) : 4 7 3. LaTeX (,, EPS ) : 8 10 4. LaTeX ( ) : 11 textlatex.pdf : tiny.tex, tiny.pdf : 1 small.tex, small.pdf : 2 normal.tex, normal.pdf : f1.eps : normal.tex
sarutex.dvi
LATEX L A TEX which monkeys cannot use. LATEX Ver2.0 SaRuTEX LATEX LATEX L A TEX L A TEX LATEX LATEX L A TEX LATEX L A TEX PAW PAW ROOT ROOT LATEX L A TEX LATEX LATEX 2001 3 S a RuTEX ( 1 ) i LATEX Ver1.1
コンピュータ基礎 5. マークアップによるレポート作成
5. Chris Plaintail December 13, 2016 1 / 70 1 L A TEX L A TEX 2 L A TEX 3 4 L A TEXbeamer 2 / 70 L A TEX 3 / 70 PDF 4 / 70 HTML(Hyper Text Markup Language) XML(eXtensible Markup Language) XHTML, SVG, SMIL,
Year 2010 Graduation Thesis A LATEX Template for Graduation Thesis Keio University Faculty of Environment and Information Studies Fusuke Hogeyama Advi
22 L A TEX Year 2010 Graduation Thesis A LATEX Template for Graduation Thesis Keio University Faculty of Environment and Information Studies Fusuke Hogeyama Advisor: Professor Hogeta Bahnaka 2010 22 L
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
L A L A TEX UTF-8 Makefile \begin{jabstract} \end{jabstract} \begin{eabstract} \end{eabstract} main.tex L A TEX i
2012 24 L A TEX 2013 1 2012 24 L A TEX @kurokobo L A TEX UTF-8 Makefile \begin{jabstract} \end{jabstract} \begin{eabstract} \end{eabstract} main.tex L A TEX i Abstract Of Master s Thesis Academic Year
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
1 1 1...................... 1 2 6 1.................. 6 2...................... 8 3 9 1........................ 9 2........................ 12 4 15 1...... 15 2........................... 18 3..........................
L A TEX Copyright c KAKEHI Katsuhiko All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{< >} \author{< >} \date{< >} < > \be
L A TEX Copyright c KAKEHI Katsuhiko 1996-1998 All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{} \author{< >} \date{} \begin{document} \end{document} article jarticle report jreport
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
PowerPoint プレゼンテーション
秋学期情報スキル応用 田中基彦教授, 樫村京一郎講師 ( 工学部 共通教育科 ) DTP の基礎 (2) 1. 日本語の入力法 2. 数式, グラフィック, テーブル - 数式 のみは理数系 3. 相互参照, 目次, 文献参照 - あの項目はどこにある? * 提出問題 5 DTP について 提出問題 5 LaTeX 言語を用いる DTP (DeskTop Publishing) について, つぎの各問に答えなさい
1 1.1 1.2 1.3 (a) WYSIWYG (What you see is what you get.) (b) (c) Hyper Text Markup Language: SGML (Standard Generalized Markup Language) HTML (d) TEX
L A TEX HTML 2000 7 2 ([-30]5051.49) 1 2 1.1.............................................. 2 1.2.............................................. 2 1.3................................................ 2 1.4.............................................
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
cpall.dvi
137 A L A TEX LATEX 1 TEX 2 (American Mathematical Society) L A TEX L. Lamport, L A TEX: a Document Preparation System, Addison Wesley (1986). Edgar Cooke, L A TEX (1990). LATEX2 ε (2003). LATEX A.1 L
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
Chapter 1 latex latex divout for windouws,texmaker,beamer latex 2012/2/2 2
Contents 1 2 2 latex 3 2.1 latex..................... 3 3 divout 4 3.1 divout for windouws.................... 4 3.2 divout for windows pdf................ 4 4 Texmaker 5 4.1 texmaker.............................
1 L A TEX
L A TEX ( ) 2011 11 4 L A TEX 2007 4 4 2007 2007 9 4 2007 2007 9 18 2009 9 9 2009 2011 9 4 2011 2011 11 4 (A,B) http://osksn2.hep.sci.osaka-u.ac.jp/ taku/kakenhilatex/ http://jelt.mtk.nao.ac.jp/ iye/kakenhilatex/
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
数学論文の書き方 - 第1回:入門編
LAT E X 2007 6 19 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
1.2 L A TEX 2ε Unicode L A TEX 2ε L A TEX 2ε Windows, Linux, Macintosh L A TEX 2ε 1.3 L A TEX 2ε L A TEX 2ε 1. L A TEX 2ε 2. L A TEX 2ε L A TEX 2ε WYS
L A TEX 2ε 16 10 7 1 L A TEX 2ε L A TEX 2ε TEX Stanford Donald E. Knuth 1.1 1.1.1 Windows, Linux, Macintosh OS Adobe Acrobat Reader Adobe Acrobat Reader PDF 1.1.2 1 1.2 L A TEX 2ε Unicode L A TEX 2ε L
JSIAM URL TEX Web jsjsiam.cls jsiammacrover
TeX. 200. How to use the TEX class files for the Transaction of the Japan Society for Industrial and Applied Mathematics Taro Ouyou Hanako Suzuki Jirou Nihon Saburou Yamada Harumi Ouyou Nihon Suuri University
1.5,. ( A, 7, * ) Emacs,., <Return>., <Delete>. <Delete>, Delete. <Delete>,. 1.6,.,, Emacs.,. ( ), ( ),,. C-x,., Emacs.,. C-x C-f ( )... C-x C-s. Emac
L A TEX 1 1.1 Emacs Emacs, (, CTRL, CTL ) (, )., CONTROL META,. C-< >, < >., C-f, f. ESC < >, < >. < >,. Emacs, C-x C-c.,. C-v. ESC v. 1.2., (previous) (next) (forward) (backward)., C-p, C-n, C-f, C-b,.
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
2 (2) WinShell 2 (3) WinShell L A TEX ( ) ( ) 2 1 L A TEX.tex L A TEX WinShell (4) WinShell 2 L A TEX L A TEX DVI DeVice Independent (5) WinShell 2 DV
1 L A TEX 2014 1 L A TEX [ 1 ] 1 : L A TEX 1.1 L A TEX L A TEX ( ) L A TEX L A TEX ( ) ( ) L A TEX \ \ Windows Y= \ Windows Y= 1.2 L A TEX WinShell Windows L A TEX WinShell Windows L A TEX WinShell L A
2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l
ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE
2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[
L A TEX 22 7 26 1. 1.1 \begin{itemize \end{itemize 1.2 1. 2. 3. \begin{enumerate \end{enumerate 1.3 1 2 3 \begin{description \item[ 1] \item[ 2] \item[ 3] \end{description 2. label \ref \figref \fgref
さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n
1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1
7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6
26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7
visit.dvi
L A TEX 1 L A TEX 1.1 L A TEX,. L A TEX,. ( Emacs). \documentclass{jarticle} \begin{document} Hello!!, \LaTeX Hello!!, L A TEX L A TEX2ε. \LaTeXe. \end{document},. \, L A TEX. L A TEX. \LaTeX L A TEX..
i I 1 1! 2 1.1 xemacs..................................... 2 1.2 platex DVI.................................... 2 1.3 xdvi............................
L A TEX 2ε 16 1 25 26 11 16 i I 1 1! 2 1.1 xemacs..................................... 2 1.2 platex DVI.................................... 2 1.3 xdvi................................. 3 1.4 dvipdfmx PD..................................
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +
6 ( ) 6 5 ( ) 4 I II III A B C ( ) ( ), 5 7 I II III A B C ( ) () x π y π sin x sin y =, cos x + cos y = () b c + b + c = + b + = b c c () 4 5 6 n ( ) ( ) ( ) n ( ) n m n + m = 555 n OAB P k m n k PO +
18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (
8 ) ) [ ] [ ) 8 5 5 II III A B ),,, 5, 6 II III A B ) ),,, 7, 8 II III A B ) [ ]),,, 5, 7 II III A B ) [ ] ) ) 7, 8, 9 II A B 9 ) ) 5, 7, 9 II B 9 ) A, ) B 6, ) l ) P, ) l A C ) ) C l l ) π < θ < π sin
1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :
9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................
3.6... 26 4 30 4.1... 30 4.1.1... 30 7 PDF 40 7.1 PDF... 40 7.2... 40 7.3 PDF.. 40 4.1.2... 31 4.2... 31 4.2.1... 31 4.2.2... 31 4.2.3... 31 4.2.4...
TEX 1 TEX 3 1.1 TEX... 3 1.2 TEX... 3 1.2.1... 3 1.2.2... 3 1.2.3... 3 1.2.4... 3 1.2.5... 3 1.3... 3 1.3.1... 3 1.3.2... 4 1.4 TEX... 4 1.4.1... 4 1.4.2... 4 1.5 TEX... 5 1.5.1... 5 1.5.2... 5 1.5.3...
PowerPoint Presentation
平成 25 年度 情報リテラシー 担当 : 一色正晴 (4 号館 405) [email protected] http://ipr20.cs.ehime-u.ac.jp/~isshiki/literacy/ 準備 リテラシ用のディレクトリ内に, 新たなディレクトリ tex を作成 HP からファイル tex.tar.gz をダウンロードして, 作成したディレクトリに保存 解凍 展開
Microsoft PowerPoint - 第13回 TeX 1日目.ppt [互換モード]
平成 21 年度情報リテラシー 担当 : 木下浩二 (4 号館 404) [email protected] http://ipr20.cs.ehime-u.ac.jp/~kinoshita/literacy/ 準備 リテラシ用のディレクトリ内に, 新たなディレクトリ tex を作成 HP からファイル tex.tar.gz をダウンロードして, 作成したディレクトリに保存 解凍
[] Tle () i ( ) e . () [].....[], ..i.et.. N Z, I Q R C N Z Q R C R i R {,,} N A B X N Z Q R,, c,,, c, A, B, C, L, y, z,, X, L pq p q def f () lim f ( ) f ( ) ( ), p p q r q r p q r p q r c c,, f ( )
LaTeX実践講座 - これから TeXを使って文書を書きまくる人のために
L A T E X T E X 2 2016 7 29 ( ) ITPASS @ 3 508 1 2 3 L A T E X Tips 4 Beamer Emacs T E X YaTeX 5 1 2 3 L A T E X Tips 4 Beamer Emacs T E X YaTeX 5 T E X T E X T E X L A T E X,, , T E X, 1,... T E X 1 2
ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2
4STEP 数学 B( 新課程 ) を解いてみた 平面上のベクトル 6 ベクトルと図形 59 A 2 B 2 = AB 2 - AA æ 1 2 ö = AB1 + AC1 - ç AA1 + AB1 3 3 è 3 3 ø 1
平面上のベクトル 6 ベクトルと図形 A B AB AA AB + AC AA + AB AA AB + AC AB AB + AC + AC AB これと A B ¹, AB ¹ より, A B // AB \A B //AB A C A B A B B C 6 解法 AB b, AC とすると, QR AR AQ b QP AP AQ AB + BC b b + ( b ) b b b QR よって,P,
TeX紹介
TeX の紹介 スタートアップゼミ 2018#4 2018 年 5 月 7 日 ( 月 ) 担当 : 三木真理子 0 目次 2 1. TeX とは 2. インストールについて 3. TeX ファイルと関連ファイルについて 4. TeX 実践 数式を書く 図を挿入する 表を挿入する 参考文献を入れる 5. 参考 URL 1 TeX とは? テフ または テック と読む 表記する際は E を下げて書くか小文字にする
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a
1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =
.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +
.1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP
TEX 6.2. EQUATIONS Y=[ Y=] equation y = ax + b y = ax + b (6.1) Y=[ Y=] Y=nonumber eqnarray 3 2 eqnarray equation Y=Y= eqnarray y = ax + b (6.2) y = x
6 ArkOak TEX L A TEX2e 2015 11 4 6.1 making title 6.2 Equations 6.2.1 y = ax + b $ $ x x $ 6.2.2 Y=[ Y=] equation 1 TEX 6.2. EQUATIONS Y=[ Y=] equation y = ax + b y = ax + b (6.1) Y=[ Y=] Y=nonumber eqnarray
0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,
[ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =
untitled
[email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
:15: :..
2016 1 1 2016 1 2017-01-17 21:15:42 9............................... 44 10.............................. 46 11.............................. 48 12 :................... 51 1 1 2 (Small Basic ) 2 1...............
(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)
2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x
04年度LS民法Ⅰ教材改訂版.PDF
?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B
readme.dvi
Vol. 34, No. 1 (2005), 1 15 L A TEX jjas.cls pl A TEX2ε jjas.cls http://www.applstat.gr.jp/ L A TEX L A TEX 1. 2 3 4 2. template.tex 2.1. \documentclass[mentuke]{jjas} \usepackage{graphicx} \usepackage[varg]{txfonts}
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
L A TEX (2)
L A TEX M1 E-mail : [email protected] 2016 4 19 L A TEX ( c ) 1 1 1.1................................................. 1 1.2................................................ 3 1.3...............................................
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
TEX ( ) #2 Options Advanced Configure Ghostscript Options dwinkanji URL W32TeX Windows ptex W32TeX
TEX ( ) #1 1 TEX 1.1 TEX TEX Donald Knuth 1 Introduction 1.1 Metaphor metaphor II 07 #1 1: 1: CPU HDD (program) (neural network) (architecture) 1.2 1.2.1 Word Processor Word Mac/Windows TEX 1: TEX 1.2
学習の手順
NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P
OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P
4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ
B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(
3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(
No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y
No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
