1.2 L A TEX 2ε Unicode L A TEX 2ε L A TEX 2ε Windows, Linux, Macintosh L A TEX 2ε 1.3 L A TEX 2ε L A TEX 2ε 1. L A TEX 2ε 2. L A TEX 2ε L A TEX 2ε WYS
|
|
|
- けんじ おなか
- 7 years ago
- Views:
Transcription
1 L A TEX 2ε L A TEX 2ε L A TEX 2ε TEX Stanford Donald E. Knuth Windows, Linux, Macintosh OS Adobe Acrobat Reader Adobe Acrobat Reader PDF
2 1.2 L A TEX 2ε Unicode L A TEX 2ε L A TEX 2ε Windows, Linux, Macintosh L A TEX 2ε 1.3 L A TEX 2ε L A TEX 2ε 1. L A TEX 2ε 2. L A TEX 2ε L A TEX 2ε WYSIWYG 2
3 3. 2 TEX/L A TEX TEX/L A TEX 1. TEX/L A TEX.tex TEX 2. TEX/L A TEX TEX.dvi DVI 3. 1DVI 4. 2 DVI PostScript.ps PS PostScript PostScript GhostScript 5. 3 Adobe Acrobat PS PDF(Portable Document Format).pdf PDF PDF Adobe Acrobat Reader Windows, Macintosh, Unix OS Windows Macintosh Unix vi OS 3
4 TEX/L A TEX TEX/L A TEX ptex/pl A TEX L A TEX L A TEX 2ε pl A TEX 2ε 1 xdvi dviout 2 dvips/dvipsk PS GhostScript GSview PostScript 3 Adobe Acrobat Distiller 2 3 dvipdfm 1,2,3 1 dvipdfm TEX/L A TEX metafont bibtex mendex TEX/L A TEX Web TEX 3 \documentclass[a4j]{article} {article} article reportbook jarticle jreport jbook tarticle treport tbook 4
5 3.1 \documentclass[a4j]{jarticle} \begin{document} \title{} \author{} \date{} \maketitle \section{} \subsection{} \subsubsection{} \end{document} 3.2 \documentclass[a4j]{jreport} \usepackage{graphicx} \begin{document} \title{} \author{} \date{} \maketitle \end{document} 3.3 \documentclass[a4j]{jbook} \begin{document} \title{} 5
6 \author{} \date{} \maketitle \chapter*{} \tableofcontents \listoffigures \listoftables \part{} \chapter{} \section{} \subsection{} \subsubsection{} \appendix{} \chapter{} \end{document} abcdefghijklmnopqrstuvwxyz tiny abcdefghijklmnopqrstuvwxyz scriptsize abcdefghijklmnopqrstuvwxyz footnotesize abcdefghijklmnopqrstuvwxyz small abcdefghijklmnopqrstuvwxyz normalsize abcdefghijklmnopqrstuvwxyz large abcdefghijklmnopqrstuvwxyz 6
7 Large abcdefghijklmnopqrstuvwxyz LARGE abcdefghijklmnopqrstuvwxyz huge abcdefghijklmnopqrstuvwxyz Huge abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTU- VWXYZ (bf) abcdefghijklmnopqrstuvwxyz ABCDEFGHI- JKLMNOPQRSTUVWXYZ (sc) abcdefghijklmnopqrstuvwxyz ABCDEFGHI- JKLMNOPQRSTUVWXYZ (it) abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTU- VWXYZ (rm) abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTU- VWXYZ (sf) abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTU- VWXYZ (tt) abcdefghijklmnopqrstuvwxyz ó ò ô ö õ ō ȯ ŏ ǒ ő oo o ọ ō o œ Œ æ Æ å Å ø Ø l L ß α β γ δ ɛ ζ η θ ι κ λ µ ν ξ o π ρ σ τ υ φ χ ψ ω 7
8 A B Γ E Z H Θ I K Λ M N Ξ O Π P Σ T Υ Φ X Ψ Ω L A TEX 2ε \ { } $ & # ˆ % c 4.3 ( ) ( ) ( ) }{{} 5 L A TEX 2ε TEX Stanford D. E. Knuth
9 $ $ $a+b$ a + b \[ \] \[(a+b)^2 = a^2 + 2ab + b^2) \] (a + b) 2 = a 2 + 2ab + b ^ _ $a^1, a^2, \ldots, a^{10}$ a 1, a 2,..., a 10 $\xi^{n-1}, \xi^{n-2}, \ldots, \xi^{n-p}$ ξ n 1, ξ n 2,..., ξ n p \frac{ }{ } \[f(x) = \frac{x^2}{1+x}\] f(x) = x2 1 + x \choose \brace \brack \[{m \choose n} \qquad {m \brace n} \qquad {m \brack n} \] 1 ( m n ) { m n } [ m n \sqrt $\sqrt{2}$ $\sqrt[3]{2}$ ] = + > < ± 1 9
10 $=$ $+$ $-$ $>$ $<$ $\pm$ $\times$ $\div$ $\in$ $\ni$ $\wedge$ $\vee$ $\cap$ $\cup$ $\equiv$ $\subset$ $\supset$ $\subseteq$ $\supseteq$ 5.2 equation \begin{equation} y=f(x) \end{equation} y = f(x) (1) L A TEX 2ε \label \ref \begin{equation} z=f(y) \label{eq:01} \end{equation} (\ref{eq:01}) z = f(y) (2) (2) \documentclass leqno \documentclass[leqno]{jarticle} 10
11 5.3 array (3 3 ) \[ \left( \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right) \] array \[ \begin{array}{cc c c c} \hline p & q & p\wedge q & \neg p & (\neg p)\vee q \\ \hline T & T & T & F & T \\ T & F & F & F & F \\ F & T & F & T & T \\ F & F & F & T & T \\ \hline \end{array} \] p q p q p ( p) q T T T F T T F F F F F T F T T F F F T T 11
12 5.4 = = $\rightarrow$ $\leftarrow$ $\longrightarrow$ $\longleftarrow$ $\leftrightarrow$ $\uparrow$ $\downarrow$ $\updownarrow$ $\Rightarrow$ $\Leftarrow$ $\Longrightarrow$ $\Longleftarrow$ $\Leftrightarrow$ $\Uparrow$ $\Downarrow$ $\Updownarrow$ $\swarrow$ $\nearrow$ $\searrow$ $\nwarrow$ $\hookrightarrow$ $\hookleftarrow$ $\rightharpoonup$ $\rightharpoondown$ $\mapsto$ $\longmapsto$ $\forall$ $\exists$ $\flat$ $\sharp$ $\triangle$ $\nabla$ $\spadesuit$ $\heartsuit$ $\diamondsuit$ $\clubsuit$ $\infty$ $\angle$ $\top$ $\bot$ $\lceil \rceil$ $\lfloor \rfloor$ 12
13 13
2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[
L A TEX 22 7 26 1. 1.1 \begin{itemize \end{itemize 1.2 1. 2. 3. \begin{enumerate \end{enumerate 1.3 1 2 3 \begin{description \item[ 1] \item[ 2] \item[ 3] \end{description 2. label \ref \figref \fgref
web04.dvi
4 MATLAB 1 visualization MATLAB 2 Octave gnuplot Octave copyright c 2004 Tatsuya Kitamura / All rights reserved. 35 4 4.1 1 1 y =2x x 5 5 x y plot 4.1 Figure No. 1 figure window >> x=-5:5;ψ >> y=2*x;ψ
visit.dvi
L A TEX 1 L A TEX 1.1 L A TEX,. L A TEX,. ( Emacs). \documentclass{jarticle} \begin{document} Hello!!, \LaTeX Hello!!, L A TEX L A TEX2ε. \LaTeXe. \end{document},. \, L A TEX. L A TEX. \LaTeX L A TEX..
1.5,. ( A, 7, * ) Emacs,., <Return>., <Delete>. <Delete>, Delete. <Delete>,. 1.6,.,, Emacs.,. ( ), ( ),,. C-x,., Emacs.,. C-x C-f ( )... C-x C-s. Emac
L A TEX 1 1.1 Emacs Emacs, (, CTRL, CTL ) (, )., CONTROL META,. C-< >, < >., C-f, f. ESC < >, < >. < >,. Emacs, C-x C-c.,. C-v. ESC v. 1.2., (previous) (next) (forward) (backward)., C-p, C-n, C-f, C-b,.
プレゼン資料 - MathML
MathML2006.03 MathML MathML2006.03-0.1 MathML 2 URL http://www.hinet.mydns.jp/~hiraku/presentation/?mathml2006.03 MathML2006.03-0.2 1. 1. Web MathML 2. MathML 3. CMS Wiki 2. CMS + MathML = 1. tdiary Hiki
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
1 1 1...................... 1 2 6 1.................. 6 2...................... 8 3 9 1........................ 9 2........................ 12 4 15 1...... 15 2........................... 18 3..........................
L A TEX Copyright c KAKEHI Katsuhiko All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{< >} \author{< >} \date{< >} < > \be
L A TEX Copyright c KAKEHI Katsuhiko 1996-1998 All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{} \author{< >} \date{} \begin{document} \end{document} article jarticle report jreport
cpall.dvi
137 A L A TEX LATEX 1 TEX 2 (American Mathematical Society) L A TEX L. Lamport, L A TEX: a Document Preparation System, Addison Wesley (1986). Edgar Cooke, L A TEX (1990). LATEX2 ε (2003). LATEX A.1 L
2 (2) WinShell 2 (3) WinShell L A TEX ( ) ( ) 2 1 L A TEX.tex L A TEX WinShell (4) WinShell 2 L A TEX L A TEX DVI DeVice Independent (5) WinShell 2 DV
1 L A TEX 2014 1 L A TEX [ 1 ] 1 : L A TEX 1.1 L A TEX L A TEX ( ) L A TEX L A TEX ( ) ( ) L A TEX \ \ Windows Y= \ Windows Y= 1.2 L A TEX WinShell Windows L A TEX WinShell Windows L A TEX WinShell L A
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
tex03final1.dvi
2002 3 L A TEX 2002 4 20 : TEX dvi PDF mikilab 1 L A TEX 1.1 Table 1.1 Table 1 1 1400 1 1700 Fig. 1 \begin{tabular}{ ()}. Fig. 2 tabular Table 2 tabular l c r \begin{center} \begin{tabular}{lcr} & & \\
数学論文の書き方 - 第1回:入門編
LAT E X 2007 6 19 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T
LaTeX実践講座 - これから TeXを使って文書を書きまくる人のために
L A T E X T E X 2 2016 7 29 ( ) ITPASS @ 3 508 1 2 3 L A T E X Tips 4 Beamer Emacs T E X YaTeX 5 1 2 3 L A T E X Tips 4 Beamer Emacs T E X YaTeX 5 T E X T E X T E X L A T E X,, , T E X, 1,... T E X 1 2
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
Chapter 1 latex latex divout for windouws,texmaker,beamer latex 2012/2/2 2
Contents 1 2 2 latex 3 2.1 latex..................... 3 3 divout 4 3.1 divout for windouws.................... 4 3.2 divout for windows pdf................ 4 4 Texmaker 5 4.1 texmaker.............................
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000
( ) 73 10,905,238 3,853,235 295,309 1,415,972 5,340,722 2,390,603 890,603 1,500,000 1,000,000 300,000 1,500,000 49 19. 3. 1 17,172,842 3,917,488 13,255,354 10,760,078 (550) 555,000 600,000 600,000 12,100,000
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
:15: :..
2016 1 1 2016 1 2017-01-17 21:15:42 9............................... 44 10.............................. 46 11.............................. 48 12 :................... 51 1 1 2 (Small Basic ) 2 1...............
( ) 1,771,139 54, , ,185, , , , ,000, , , , , ,000 1,000, , , ,000
( ) 6,364 6,364 8,884,908 6,602,454 218,680 461,163 1,602,611 2,726,746 685,048 2,022,867 642,140 1,380,727 18,831 290,000 240,000 50 20. 3.31 11,975,755 1,215,755 10,760,000 11,258,918 (68) 160,000 500,000
readme.dvi
Vol. 34, No. 1 (2005), 1 15 L A TEX jjas.cls pl A TEX2ε jjas.cls http://www.applstat.gr.jp/ L A TEX L A TEX 1. 2 3 4 2. template.tex 2.1. \documentclass[mentuke]{jjas} \usepackage{graphicx} \usepackage[varg]{txfonts}
電気通信大学 コンピュータリテラシー 文書整形 --- LaTeX ---
1 L A TEX B5 1. LaTeX ( ) : 1 3 2. LaTeX ( ) : 4 7 3. LaTeX (,, EPS ) : 8 10 4. LaTeX ( ) : 11 textlatex.pdf : tiny.tex, tiny.pdf : 1 small.tex, small.pdf : 2 normal.tex, normal.pdf : f1.eps : normal.tex
3 MathJax HTML \ Y \ Y mathjax.html <html> <head> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax /2.7.0/MathJax.js
MathJax 1 MathJax MathJax JavaScript : MathJax IE6 Chrome 0.2 Safari 2 Opera 9.6 MathJax MathJax 2010 MathJax MathJax JavaScript MathJax JavaScript MathJax MathJax 2 HTML MathJax HTML HTML mathjax.html
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +
1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4
untitled
24 591324 25 0101 0002 0101 0005 0101 0009 0101 0012 0101 0013 0101 0015 0101 0029 0101 0031 0101 0036 0101 0040 0101 0041 0101 0053 0101 0055 0101 0061 0101 0062 0101 0004 0101 0006 0101 0008 0101 0012
四変数基本対称式の解放
The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)
23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/
4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ
Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U
all.dvi
72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =
72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
untitled
( œ ) œ 2,000,000 20. 4. 1 25. 3.27 44,886,350 39,933,174 4,953,176 9,393,543 4,953,012 153,012 4,800,000 164 164 4,001,324 2,899,583 254,074 847,667 5,392,219 584,884 7,335 4,800,000 153,012 4,800,000
PowerPoint プレゼンテーション
秋学期情報スキル応用 田中基彦教授, 樫村京一郎講師 ( 工学部 共通教育科 ) DTP の基礎 (2) 1. 日本語の入力法 2. 数式, グラフィック, テーブル - 数式 のみは理数系 3. 相互参照, 目次, 文献参照 - あの項目はどこにある? * 提出問題 5 DTP について 提出問題 5 LaTeX 言語を用いる DTP (DeskTop Publishing) について, つぎの各問に答えなさい
L A L A TEX UTF-8 Makefile \begin{jabstract} \end{jabstract} \begin{eabstract} \end{eabstract} main.tex L A TEX i
2012 24 L A TEX 2013 1 2012 24 L A TEX @kurokobo L A TEX UTF-8 Makefile \begin{jabstract} \end{jabstract} \begin{eabstract} \end{eabstract} main.tex L A TEX i Abstract Of Master s Thesis Academic Year
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
4.4... 17 4.5... 18 4.6... 18 4.7 sin log lim... 18 5 19 6 20 6.1... 20 6.2... 21 7 22 7.1... 22 7.2... 23 8 Deutsch 24 9 24 1 Hello, TEX World! 1.1 T
-platex2 by MiYaGG 1 Hello, TEX World! 2 1.1 TEX... 2 1.2 pl A TEX2... 3 1.3 TEX... 4 1.4 TEX... 4 1.5 To err is human......... 6 1.6 UNIX... 6 2 7 2.1... 7 2.2... 8 2.3... 8 2.4... 9 2.5... 10 2.6...
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
tex02.dvi
2002 2 L A TEX 2002 4 15 : L A TEX EPS EPS 1 L A TEX L A TEX L A TEX L A TEX 1.1 L A TEX 1.1.1 L A TEX TEX.tex.tex.tex 1.1.2 TEX 1. TEX L A TEX Y TEX L A TEX Y (@ ) TEX L A TEX 2. 1 YTeX YTeX ( ) 3. 2
untitled
š ( ) 200,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 120,000 240,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000 120,000 60,000 100,000 100,000 60,000 200,000
数学論文の書き方 - 第2回:基礎編
2 2007 6 20 1 2 3 amscd xy-pic 4 5 1 2 3 amscd xy-pic 4 5 1 2 3 amscd xy-pic 4 5 1 2 3 amscd xy-pic 4 5 1 2 3 amscd xy-pic 4 5 Outline 1 2 3 amscd xy-pic 4 5 amsart, L A T E X \documentclass{} article
2011-10-22 16:50 17:40 2011-10-23 ptex CIO 20 1991 1994 1997 2000 2004 2007 2010 TEX 1986 1987 1987 ASCII TEX MicroTEX 98,000 34,000 1990 ptex ptexst C 1991 2003 LATEX 1991 min10 1993 JIS X 4051 LATEX
š ( š ) 7,930,123,759 7,783,750, ,887, ,887 3,800,369 2,504,646,039 i 200,000,000 1,697,600, ,316.63fl 306,200,
š ( š ) (Ÿ ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 907,440,279 16 17. 3.30 23,805,381,307 7,603,591,483 16,201,789,824 15,716,666,214 (400,000) 1,205,390,461 200,000,000 200,000,000
untitled
œ ( œ ) œ 847,120 2,343,446 2,343,446 45,242 25. 5.17 6,472,966 6,472,966 6,472,966 972,332 972,332 5,500,000 5,500,000 634 634 2,053,480 1,423,820 27,053 79,255 523,352 4,419,486 95,352 4,300,204 4,300,204
DVIOUT-マスタ-
L A TEX T.T TEX TEX 1 TEX TEX Donald E. Knuth tex 2 L A TEX TEX LATEX( DEC Leslie Lamport TEX TEX 3 L A TEX 3.1 L A TEX documentclass[]{} begin{document} end{document} LATEX 3.1.1 documentclass[a4paper,twocolumn,11pt]{jarticle}
sarutex.dvi
LATEX L A TEX which monkeys cannot use. LATEX Ver2.0 SaRuTEX LATEX LATEX L A TEX L A TEX LATEX LATEX L A TEX LATEX L A TEX PAW PAW ROOT ROOT LATEX L A TEX LATEX LATEX 2001 3 S a RuTEX ( 1 ) i LATEX Ver1.1
nsg02-13/ky045059301600033210
φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
1 1.1 1.2 1.3 (a) WYSIWYG (What you see is what you get.) (b) (c) Hyper Text Markup Language: SGML (Standard Generalized Markup Language) HTML (d) TEX
L A TEX HTML 2000 7 2 ([-30]5051.49) 1 2 1.1.............................................. 2 1.2.............................................. 2 1.3................................................ 2 1.4.............................................
