ウェーブレットによる経済分析

Size: px
Start display at page:

Download "ウェーブレットによる経済分析"

Transcription

1

2 wavelet J.J. Morlet D. D. Gabor uncertanty prncple Conway and Frame Schlecher

3

4 wave let

5

6

7 DWT: dscrete wavelet transformcwt: contnuous wavelet transform AUSSMATLABS-PlusMathematca CD-ROMMathematca

8

9 MODWT h L h k =. k = L h k =. k = L h kh k+n =. n k = L Percval and Walden Gençay, Selçuk and Whtcher k+ n >L,,, h,, h L,,,

10 orthonormalty gquadrature mrror relatonshp g =( ) h L + h =( ) g L +. L g k =. k = L g k =. k = L g kg k +n =. n k = L g kh k +n =. n k = h =,, g =,. g k =

11 L L DLDL L / L (k ) h k =. =,, L / k = vanshng momentsl / D4 = D4 h = ,,, 4 4 4, g + = ,,, D4 D

12 D D LA MB

13 D / 4 LAL least asymmetrc wavelet MBL mnmum bandwdth wavelet

14 D D LA MB Gençay, Selçuk and Whtcher

15 S. S. Mallat x = (x,,x N )N h w L, t = k x{( t k) mod N } + k= w h. Nt N/A mod N AN N xg v v L g x, = t k k= {( t k) mod N } +. N/ N

16 w x x, x, x 3, x 4 g h v x + x x, 4 + x 3 w x x, x 4 x 3 g h v x 4 + x 3 + x + x w x 4 + x 3 x x g = [, ], h = [, ]

17 v v w v v v x v h w w,t = L h k v, {( N/ } + k= t k ) mod. v g v v, t L = g kv, {( t k) mod N/ } + k=. w v N/ w v v w 3 v 3 + w + v + v w + v + w + = (, w +,,, w +,,)v + = (, v +,,, v +,,)

18 + w + h + v + g v v = L L, t hk w + g +,{( t + k )mod N / } + kv k= k= +,{( t+ k )mod N / } +.

19 (, 3, 3, 3,,, 3, 4) g,h ( 4,,, 7) (, 6,, ) g,h ( 4, 9) (4, 5) g,h (5) (3) g = [, ], h = [, ]

20 v w v N/ N/ W V h h4 g g 4 h h g g 3 3 h g h g g h 4 4 h g 3 3 h h g g 4 4 h h g g 3 3 h h g 4 4 g h3 h g3 g,. w = W v, v = V v. W V U N/ N/ w = U v v, W U. V w v

21 UU T = U T U = I U T UI +U T + w U = T + v v T T + + w+ + V+ v+ + W = v. U T + h g U T + ( N/ N/ )w + v + w + v + N/ U + T h = h4 h3 h h h h h 4 3 h h h h 4 3 h h h h 4 3 g g g g 4 3 g g g g 4 3 g g g g 4 3, g 4 g 3 g g w v + + w + w = +, v+ v +,, N/, N/. U T + T w U + + = v v +. U T + N / N / W T + V T + W T + w + +V T +v + = v.

22 v w w v w d d v v w s v s w d s d s s d x s x s = d + s. x x, x, x 3, x 4 s x + x x, + x x, 4 + x 3 x, 4 + x 3 x d + x x, x x x, 4 + x 3, 4 x 3 x 4 + x 3 + x + x s, 4 x 4 + x x x, 4 + x x x, 4 + x 3 + x + x 4 4 x 4 + x 3 + d x 4 x 3 + x + x, x 4 x 3 + x + x, 4 4 x 4 + x 3 x x, 4 x 4 + x 3 x x 4 g = [, ], h = [, ]

23 r = k= d kwavelet rough x = r + s. s d s d s s 3 s d 3

24 (, 3, 3, 3,,, 3, 4) g,h ( 4, 4,,,,, 7, 7) g,h (,, 6, 6,,,, ) 4 ( 4, 4, 4, 4, 9, 9, 9, 9) 4 ( 4, 4, 4, 4, 5, 5, 5, 5) g,h 8 (5, 5, 5, 5, 5, 5, 5, 5) 8 ( 3, 3, 3, 3, 3, 3, 3, 3) g = [, ], h = [, ]

25 HT: hard thresholdng HT( w, j w, j for w, j >, ) =. soft thresholdng unversal thresholdng Gençay, Selçuk and Whtcher

26 w, j j =.5 HT w w HT w HT d HT s HT (= s ) x HT HT k = for for k, k +. = (w ). Walker

27 g,h ( 4,,, 7) (, 6,, ) g,h ( 4, 9) (4, 5) g,h (5) (3) g = [, ], h = [, ]

28 zz z z T z + UU T = U T U = I v = v T = T v w +, v ( T T +) U +U + w v + + = wt T w v +v + = w + v + +. v x = x = w + v. w = = w = s = V T V T v. VV T = I s =( V T T T T V v ) V V T v T T T T V v = v v v = v V V V =. d = V T V T W T w. WW T = I VV T = I

29 T T T T T T d = ( V V W w ) V V T T T T T = w WV V V V W w = w w = w W T w. x x x

30 w w w 3 w 4 j MODWTmaxmal overlap dscrete wavelet transform MODWT h = h/, g = g /. MODWT v x

31 v h w w, t L = h k v, { t ( k ) mod N} + k=. v g v v, t = L g kv, { t ( k ) mod N} + k=. +w + h + v + g v v, = L t h kw { t + + L +, ( k ) modn } + g kv k +, { t + ( k ) mod N } + = k=. MODWT MODWT MODWT MODWT

32 4 = 5 7 D4 D

33 w w w 3 w 4 w 5 v 5

34 MODWT MODWT DWT

35 d d d 3 d 4 d 5 s 5

36

37 s 5 d 5 d 4 d 3 d

38 w w w 3 w 4 w 5 v 5

39 d d d 3 d 4 d 5 s 5

40

41 s 5 d 5 d 4 d 3 d

42 Ramsey and Lampart

43

44 D4 D4 = h + h + h 3 + h 4 =..h +.h +.h h 4 =. 3, 5, 7, 9 9 h h + 7 h + 5 h = ( + 9) h + h + ( + 9) h + ( + 9) h 3+ ( 3 9) 4 = ( h + h + h h4) + 9 ( h + h + h3 + h4) =. D =,,5 = D4 D4 D D D4D D4 384 = 7 3

45 D4D D4D D4 D D4 D

46 D D

47 D D

48 d d d 3 d 4 d 5 d d d 3 d 4 d 5 D D d d d 3 d 4 d 5 d d d 3 d 4 d 5 D D d d d 3 d 4 d 5 d d d 3 d 4 d 5

49 c,t =, +,. y (p),t +, t. c, t y (p),t p p y,t p D4D D4D D4D,

50 t t d d d 3 d 4 d 5 s 5 D d d d 3 d 4 d 5 s 5 D d d d 3 d 4 d 5 s 5

51 , D4D MODWTw,t ( w,t ) w,t E ( w,t ) ( w,t )=E( w,t ). N t=w,t /N x

52 MODWT L ( )(L )+w,t t = L,, N w, t t = L ( w,t) =. N L + N DWT N/ t= w,t /(N/ )MODWT L (L )( )+ w, t t = L,, N/ / N w, t t = L ( w ) =,t N / L +. DWT DWTMODWT DWT ( w,t )/ MODWT DL = ( 9 ) ( ) = 7 DMODWT

53

54 DWTDWTMODWT DWTMODWT ICSS: terated cumulatve sums of squaresinclán and Tao k p = L q = N/ k w t= p, t =. ( k = p,, q ) C, k q w t= p, t (w, t )=w, t C, k p q p k C,k (k p +)/(q p +) C,k (k p +)/(q p +) Percval and Walden D

55 + D = max( D, D ), + k p + = max C k q p D, k, = max k C D, k k q p p. Inclán and TaoD P( D j+ > z) ( ) exp[ j ( q p + j= ) z ]. D z p D k = k DWT MODWT p =L q = NC,k D k w t= p, t C, k = q w, t t= p. ( k p,, q ) = + D = max( D, D ), + k p + = D max C k, k q p = max k C D, k k q p p., Dk = k MODWTDWT DWT w,t MODWT w,t MODWT

56 a = p a = p c = q c = q w,t (t = a,, c) D kcw, t (t = a,, c )D kc c c b b a = c a = cc = q c = q m b b j b j b j w,t (t = b j,, b j+ )D b p b m+ q j + b j b j ICSS D DWT MODWT p DWTDWT MODWT

57 p

58

59 BBx t = x t ( B) x t = t. /<</ < < /x = x /<< x x Hoskng x

60 (,t w ) C ( ). CJ = + ln( ( w )),t ln( ) +. ( =,, J ) =/( +) Var ()=/4Var ( )

61

62 C. K. Chu, C. K., Introducton to Wavelets, New York: Academc Press, 99 Conway, P., and D. Frame, Spectral Analyss of New Zealand Output Gaps Usng Fourer and Wavelet Technques, Reserve Bank of New Zealand Dscusson Paper, DP/6,. Gençay, R., F. Selçuk, and B. Whtcher, An Introducton to Wavelets and Other Flterng Methods n Fnance and Economcs, San Dego: Academc Press,. Hoskng, J. R. M., Fractonal Dfferencng, Bometrka, 68 (), 98, pp Inclán, D., and G. C. Tao, Use of Cumulatve Sums of Squares for Retrospectve Detecton of Changes of Varance, Journal of the Amercan Statstcal Assocaton, Theory and Methods, 89, 994, pp Percval, D. B., and A. T. Walden, Wavelet Methods for Tme Seres Analyss, Cambrdge: Cambrdge Unversty Press,. Ramsey, J. B., and C. Lampart, The Decomposton of Economc Relatonshps by Tme Scale Usng Wavelets: Expendture and Income, Studes n Nonlnear Dynamcs and Econometrcs, 3 (), 998, pp Schlecher, C., An Introducton to Wavelets for Economsts, Bank of Canada Workng Paper, -3,. Walker, J. S., A Prmer on Wavelets and ther Scentfc Applcaton, Boca Raton: Chapman & Hall/CRC, 999.

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

1.... 3 2.... 5 3.... 8 3.1.... 9 3.2.... 13 3.3.... 18 4.... 21 4.1.... 21 4.2.... 23 4.3.... 26 5.... 32... 33 1... 35 2... 39 1.... 39 2.... 43 2

1.... 3 2.... 5 3.... 8 3.1.... 9 3.2.... 13 3.3.... 18 4.... 21 4.1.... 21 4.2.... 23 4.3.... 26 5.... 32... 33 1... 35 2... 39 1.... 39 2.... 43 2 JILPT Dscusson Paper Seres 12-2 212 3 ( 22 6 18 ) 1 1.... 3 2.... 5 3.... 8 3.1.... 9 3.2.... 13 3.3.... 18 4.... 21 4.1.... 21 4.2.... 23 4.3.... 26 5.... 32... 33 1... 35 2... 39 1.... 39 2.... 43 2

More information

橡jttc2.PDF

橡jttc2.PDF 1 ( ) 1 GA GA GA MOGA (Multple-Objectve Genetc Algorthm) GA GA GA MOGA GA GA MOGA GA GA 3.1MOGA ( ) x x j f = f, f, 1 2 L, f q x x j x j f ( x ) f ( x ) f ( x ) f ( x ) L f ( x ) f ( x ) ( ) ( ) 1 1 j

More information

d bd o o p p i i u u j j du d f f g h h -

d bd o o p p i i u u j j du d f f g h h - - d bd o o p p i i u u j j du d f f g h h - 3 d p dp d 3 p -3 -4 -5 -6 u d d y f b d v p bd Uu XdXd Xd Xf Pp -7 h zj x j h 3 t y -8 -9 i id f d o p u i Wy Xd Ii r i v d -0 c c w r w q q q w q - - u u d

More information

製造業における熟練労働への需要シフト:

製造業における熟練労働への需要シフト: * [email protected] ** [email protected] No.04-J-17 2004 12 103-8660 30 * ** * 2004 12 1988 2003 * e-mal: [email protected] e-mal: [email protected] 1 1. 1980 1990 1 skll-based technologcal

More information

子ども・子育て支援新制度 全国総合システム(仮称)に関するインターフェース仕様書 市町村・都道府県編(初版)

子ども・子育て支援新制度 全国総合システム(仮称)に関するインターフェース仕様書 市町村・都道府県編(初版) 1...1 1.1... 1 1.1.1... 1 1.2... 3 1.2.1... 3 1.2.2... 4 1.3... 5 1.4... 6 1.4.1... 6 (1) B11:...6 (2) B11:...8 1.4.2... 11 (1) B31:... 11 1.4.3... 12 (1) B21, B41:... 12 2... 14 2.1... 14 2.1.1... 14

More information

10 4 2

10 4 2 1 10 4 2 92 11 3 8 20 10 2 10 20 10 28 3 B 78 111 104 1021 95 10 2 4 10 8 95 18 10 30 11 13 104 20 105 105 105 105 107 5 1 11 26 13301500 6 GH 1 GH 34 7 11 27 9301030 8 4 9 GH 1 23 10 20 60 --------------------------------------------------------------------------------------------------------------------------

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

JGSS統計分析セミナー2009-傾向スコアを用いた因果分析-

JGSS統計分析セミナー2009-傾向スコアを用いた因果分析- 日本版総合的社会調査共同研究拠点研究論文集 [10] JGSS Research Seres No.7 JGSS 2009 JGSS JGSS Statstcal Analyss Semnar: Causalty Analyss based on the Propensty Score Kana MIWA JGSS Research Center Osaka Unversty of Commerce

More information

) km 200 m ) ) ) ) ) ) ) kg kg ) 017 x y x 2 y 5x 5 y )

) km 200 m ) ) ) ) ) ) ) kg kg ) 017 x y x 2 y 5x 5 y ) 001 ) g 20 g 5 300 g 7 002 720 g 2 ) g 003 0.8 m 2 ) cm 2 004 12 15 1 3 1 ) 005 5 0.8 0.4 ) 6 006 5 2 3 66 ) 007 1 700 12 ) 008 0.315 ) 009 500 g ) kg 0.2 t 189 kg 17.1 kg 010 5 1 2 cm 3 cm )km 2-1 - 011

More information

<4D F736F F D2092B28DB882C982C282A282C42E646F63>

<4D F736F F D2092B28DB882C982C282A282C42E646F63> Íû Ñ ÐÑw x ÌÆÇÇ ÇÊÊ ÉÈÉÃÑ ÐÑwà v Ê ÉÇÂdvÊwÎxÇiÊ vèéìêéèâ Ñ ÐÑwÊËÊÊÎwÈÂÈËÉÊÊÆÇ ÍËÊfuÊ~ÎËÊÍÇÊÈÍÇÉÂvw ÊÉÌÊyÎÍÇÉÎÉÈÉÆÌÈ ÇÊwÊÂÇÊÎÿÉfÊÈÍvwÉÈÉ vwêêêuvwîuèâéêvèíéwéâéê ÎyÉÈ ÍÂÇÉÿÊvwÉÈ ÎÂsÌÊÂÆÍÆÊgyÉÈÉÇÈÉÆÉÉÇÍÊ

More information

An Empirical Study of the Securities Firms' Dilemma on Financial Innovation through Diffusion of Internet Deals Yasugi Satoshi Bower, J. L., 1999, Disruptive technologies: Catching the wave,

More information

Bvarate Probt Model 0.24% 0.4% 5.%.% %.% Keyword Bvarate Probt Model 6- TEL & FAX: E-mal:

Bvarate Probt Model 0.24% 0.4% 5.%.% %.% Keyword Bvarate Probt Model 6- TEL & FAX: E-mal: Dscusson Paper No. 508 2000 5 Bvarate Probt Model 0.24% 0.4% 5.%.% 00 0.55%.% Keyword Bvarate Probt Model 6- TEL & FAX: 0727-62-8484 E-mal: [email protected] 995 58 8.2% 996 72 334 /3 2 3 996 2 (995)

More information

10 2 2 10 6.5 78 1 65 / 30 / - 2 -

10 2 2 10 6.5 78 1 65 / 30 / - 2 - - 1 - 10 2 2 10 6.5 78 1 65 / 30 / - 2 - 3 3 30 8 4 8 6 11 14 45 14 7 8 1-3 - 4 1 () 20 4 9 4 9 3 9 4 PR 4 3-4 - - 5 - PR 15 4 PR 7 8 4 9 10-6 - 9 10 9 10 4 9 10 3 9 10 9 9 9 10 PR 1-7 - PR - 8 - 30 100-9

More information

平塚信用金庫の現況 2015

平塚信用金庫の現況 2015 2015 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 8 9 @ A B C D E F G H I J K HK L M N O P Q R T R T S T U V W 1 2 3 4 5 6 E F C J I O M N K L H 8 7 G D 0 A 6 9 5

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

20169 3 4 5003 n=3,000 61.8% 38.2% n=3,000 20 7.3% 30 21.3% 40 34.8% 50 36.6% n=3,000 3.0% 2.0% 1.5% 12.1% 14.0% 41.4% 25.9% n=3,000 37.7% % 24.8% 28.8% 1.9% 3.1% 0.2% n=3,000 500 64.0% 500 1,000 31.3%

More information

No. 1261 2003. 4. 9 14 14 14 14 15 30 21 19 150 35 464 37 38 40 20 970 90 80 90 181130 a 151731 48 11 151731 42 44 47 63 12 a 151731 47 10 11 16 2001 11000 11 2002 10 151731 46 5810 2795195261998 151731

More information

Microsoft Word - 99

Microsoft Word - 99 ÿj~ ui ~ 伊万里道路 ~{Êu ÊËu ÎÍÊ Êy y Ê~ Ê~Êu}Ì ÐÑÒdÌÊh ÿj~ ui ~ ~{Êu ÿj~ 497 ui ~ Êu ui ~Êud~{ÊÿÉÉvÍÉ~{ÉÆÍÂu ÊÆÇÍÊÂ~ÊÊÇÇÍÌÊÉÆÍÂ {dêîzééââââîé ÊiÍ MO Êÿj~i ~{ÉÆÍÂ Ë ÊÇÍÎ~ÌÉÇÉÆÍÂÌÉÊ,%6 +% ~{Êÿ Â,%6 ÌÊÉ +% ~{É~{Ê

More information

-

- - - v vt t y r y W0W9WwWq czx t - -4 u d d dr y r y x dx dd dd d d Wt Wq Wq f d x dt r o rd Wt XdXd Xd tx d Uu Xd Xd -5 v czx d t r o XdXd Xd -6 -7 o t t v vt t y y W0 W9WwWq -8 cc zx t d d y r Xd v iz

More information

Vol. 31 No. 3 Aug. 2014 157 VCG [16][12] yes/no VCG VCG 1 ( ) 1. 1 (VCG-equvalent n expectaton, VCG-EE) VCG VCG VCG-EE VCG VCG

Vol. 31 No. 3 Aug. 2014 157 VCG [16][12] yes/no VCG VCG 1 ( ) 1. 1 (VCG-equvalent n expectaton, VCG-EE) VCG VCG VCG-EE VCG VCG 156 VCG-equvalent n Expectaton VCG-equvalent n expectaton VCG-equvalent n expectaton Vckrey-Clarke-Groves (VCG) VCG VCG-equvalent n expectaton VCG-equvalent n expectaton In ths paper, we develop a new

More information

...............y.\....07..

...............y.\....07.. 150 11.512.0 11.812.0 12.013.0 12.514.0 1 a c d e 1 3 a 1m b 6 20 30cm day a b a b 6 6 151 6 S 5m 11.511.8 G 515m 11.812.0 SG 10m 11.812.0 10m 11.511.8 1020m 11.812.0 SF 5m 11.511.8 510m 11.812.0 V 5m

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

日経テレコン料金表(2016年4月)

日経テレコン料金表(2016年4月) 1 2 3 4 8,000 15,000 22,000 29,000 5 6 7 8 36,000 42,000 48,000 54,000 9 10 20 30 60,000 66,000 126,000 166,000 50 100 246,000 396,000 1 25 8,000 7,000 620 2150 6,000 4,000 51100 101200 3,000 1,000 201

More information

308 ( ) p.121

308 ( ) p.121 307 1944 1 1920 1995 2 3 4 5 308 ( ) p.121 309 10 12 310 6 7 ( ) ( ) ( ) 50 311 p.120 p.142 ( ) ( ) p.117 p.124 p.118 312 8 p.125 313 p.121 p.122 p.126 p.128 p.156 p.119 p.122 314 p.153 9 315 p.142 p.153

More information

戦後の補欠選挙

戦後の補欠選挙 1 2 11 3 4, 1968, p.429., pp.140-141. 76 2005.12 20 14 5 2110 25 6 22 7 25 8 4919 9 22 10 11 12 13 58154 14 15 1447 79 2042 21 79 2243 25100 113 2211 71 113 113 29 p.85 2005.12 77 16 29 12 10 10 17 18

More information

73 p.1 22 16 2004p.152

73 p.1 22 16 2004p.152 1987 p.80 72 73 p.1 22 16 2004p.152 281895 1930 1931 12 28 1930 10 27 12 134 74 75 10 27 47.6 1910 1925 10 10 76 10 11 12 139 p.287 p.10 11 pp.3-4 1917 p.284 77 78 10 13 10 p.6 1936 79 15 15 30 80 pp.499-501

More information

122011pp.139174 18501933

122011pp.139174 18501933 122011pp.139174 18501933 122011 1850 3 187912 3 1850 8 1933 84 4 1871 12 1879 5 2 1 9 15 1 1 5 3 3 3 6 19 9 9 6 28 7 7 4 1140 9 4 3 5750 58 4 3 1 57 2 122011 3 4 134,500,000 4,020,000 11,600,000 5 2 678.00m

More information

2 2 3 4 5 5 2 7 3 4 6 1 3 4 7 4 2 2 2 4 2 3 3 4 5 1932 A p. 40. 1893 A p. 224, p. 226. 1893 B pp. 1 2. p. 3.

2 2 3 4 5 5 2 7 3 4 6 1 3 4 7 4 2 2 2 4 2 3 3 4 5 1932 A p. 40. 1893 A p. 224, p. 226. 1893 B pp. 1 2. p. 3. 1 73 72 1 1844 11 9 1844 12 18 5 1916 1 11 72 1 73 2 1862 3 1870 2 1862 6 1873 1 3 4 3 4 7 2 3 4 5 3 5 4 2007 p. 117. 2 2 3 4 5 5 2 7 3 4 6 1 3 4 7 4 2 2 2 4 2 3 3 4 5 1932 A p. 40. 1893 A p. 224, p. 226.

More information

29 2011 3 4 1 19 5 2 21 6 21 2 21 7 2 23 21 8 21 1 20 21 1 22 20 p.61 21 1 21 21 1 23

29 2011 3 4 1 19 5 2 21 6 21 2 21 7 2 23 21 8 21 1 20 21 1 22 20 p.61 21 1 21 21 1 23 29 2011 3 pp.55 86 19 1886 2 13 1 1 21 1888 1 13 2 3,500 3 5 5 50 4 1959 6 p.241 21 1 13 2 p.14 1988 p.2 21 1 15 29 2011 3 4 1 19 5 2 21 6 21 2 21 7 2 23 21 8 21 1 20 21 1 22 20 p.61 21 1 21 21 1 23 1

More information

Microsoft Word - 映画『東京裁判』を観て.doc

Microsoft Word - 映画『東京裁判』を観て.doc 1 2 3 4 5 6 7 1 2008. 2 2010, 3 2010. p.1 4 2008 p.202 5 2008. p.228 6 2011. 7 / 2008. pp.3-4 1 8 1 9 10 11 8 2008, p.7 9 2011. p.41 10.51 11 2009. p. 2 12 13 14 12 2008. p.4 13 2008, p.7-8 14 2008. p.126

More information

() L () 20 1

() L () 20 1 () 25 1 10 1 0 0 0 1 2 3 4 5 6 2 3 4 9308510 4432193 L () 20 1 PP 200,000 P13P14 3 0123456 12345 1234561 2 4 5 6 25 1 10 7 1 8 10 / L 10 9 10 11 () ( ) TEL 23 12 7 38 13 14 15 16 17 18 L 19 20 1000123456

More information

Revealed Preference Theory and the Slutsky Matrx Yuhk Hosoya Abstract: In ths paper, we prove that for any contnuous

Revealed Preference Theory and the Slutsky Matrx Yuhk Hosoya Abstract: In ths paper, we prove that for any contnuous Powered by TCPDF (www.tcpdf.org) Ttle 顕示選好理論とスルツキー行列 Sub Ttle Revealed preference theory and the Slutsky matrx Author 細矢, 祐誉 (Hosoya, Yuk) Publsher 慶應義塾経済学会 Publcaton year 2015 Jttle 三田学会雑誌 (Mta ournal

More information

無印良品のスキンケア

無印良品のスキンケア 2 3 4 5 P.22 P.10 P.18 P.14 P.24 Na 6 7 P.10 P.22 P.14 P.18 P.24 8 9 1701172 1,400 1701189 1,000 1081267 1,600 1701257 2,600 1125923 450 1081250 1,800 1125916 650 1081144 1,800 1081229 1,500 Na 1701240

More information