線形空間の入門編 Part3

Size: px
Start display at page:

Download "線形空間の入門編 Part3"

Transcription

1 Part3 j1701 March 15, 2013 (j1701) Part3 March 15, / 46

2 table of contents (j1701) Part3 March 15, / 46

3 f : R 2 R 2 ( ) x f = y ( ) ( x y ) = ( ) x y y x, y = x ( x y) 0!! ( ) ( ) ( ) f = = f 1 ) ( 2 2 = 1 1 ( ) = ( 0 0 ) (j1701) Part3 March 15, / 46

4 (j1701) Part3 March 15, / 46

5 y = x?? y = x,,!! ( ) x f = y f 0,!! f 0 ( ) x y = y x ( ) 0 0 (j1701) Part3 March 15, / 46

6 f : V W, Ker f def = {x V f(x) = 0} V Ker f f (Kernel) V W f 0 Ker f (j1701) Part3 March 15, / 46

7 Ker f Ker f!! (j1701) Part3 March 15, / 46

8 Ḳer f, V 3!! Ker f v, w Ker f v + w Ker f v Ker f, c R cv Ker f (j1701) Part3 March 15, / 46

9 ,, 0 Ker f f(0) = 0 v, w Ker f v + w Ker f f(v + w) = f(v) + f(w) = = 0, v + w Ker f c R, v Ker f cv Ker f f(cv) = cf(v) = c 0 = 0, cv Ker f (j1701) Part3 March 15, / 46

10 f : R 2 R 2 ( ) x f = y ( ) ( x y ) =, 4 f ( ) ( ) ( ) ( ) ,,, ( ) x y y x (j1701) Part3 March 15, / 46

11 ( ) 1 f 2 ( ) 4 f 1 ( ) 1 f 1 ( ) 3 f 2 = = = = ( ) ( ) ( ) = ( ) ( ) ( ) = ( ) ( ) ( ) = ( ) ( ) ( ) = (j1701) Part3 March 15, / 46

12 y = x?? (j1701) Part3 March 15, / 46

13 ( x y) R 2 ( ) ( x y ) = ( ) ( ) ( ) x y 1 1 = (x y) y x 1 1 (, R 2, 1 ) 1!!!! (j1701) Part3 March 15, / 46

14 f : V W, Im f def = {f(x) W x V } W Im f f (Image) V f W Imf (j1701) Part3 March 15, / 46

15 Ịm f W Proof f(0) = 0, 0 Im f f(v), f(w) Im f, c R, f(v) Im f,, Im f W f(v) + f(w) = f(v + w) Im f cf(v) = f(cv) Im f (j1701) Part3 March 15, / 46

16 ( ) 1 Ker f = 1 ( ) 1 Im f = 1 dim (Im f) + dim (Ker f) = 2 = dim R 2 ( (dimension theorem)!!) (j1701) Part3 March 15, / 46

17 f f : R 3 R 3 x x f y = y z z!! x x 0 Ker f = y f y = 0 z z 0 Im f = x x f y y R 3 z z (j1701) Part3 March 15, / 46

18 , Ker f x y = z 0 OK (j1701) Part3 March 15, / 46

19 , { x 3z = 0 x = 3z y + z = 0 y = z z = t, x = 3t, y = t, x 3t 3 y = t = t 1 (t R) z t 1 3 Ker f = 1 dim (Ker f) = 1 1 (j1701) Part3 March 15, / 46

20 Im f x y R 3, z x y z x x + 2y z y = y + z = x 0 + y 1 + z z x + y 2z (j1701) Part3 March 15, / 46

21 , 1, , Im f!! (why?) Im f,!! (j1701) Part3 March 15, / 46

22 3 3, , ,!! (j1701) Part3 March 15, / 46

23 , = , x f y = x 0 + y 1 + z z , x 1 2 f y = (x 3z) 0 + (y + z) 1 z 1 1 (j1701) Part3 March 15, / 46

24 x 3z = t, y + z = s, x 1 2 f y = t 0 + s 1 z , 1, Im f!! , 1 Im f, dim (Im f) = (j1701) Part3 March 15, / 46

25 , ( ) ( ),, (j1701) Part3 March 15, / 46

26 !! V, W : linear space, W V V/W (quotient linear space)!! (j1701) Part3 March 15, / 46

27 1 a = a ( ) 2 a = b b = a (a b b a ) 3 a = b, b = c a = c ( ), (j1701) Part3 March 15, / 46

28 a, b 3,, a b mod 3 1 a a mod 3 ( 3 ) 2 a b mod 3 b a mod 3 (a b, b a ) 3 a b mod 3, b c mod 3 a c mod 3 (a b, b c, a c ) a b mod 3, a, b 3 (j1701) Part3 March 15, / 46

29 P, Q,, P Q 1 P Q ( ) 2 P Q Q P (P Q, Q P ) 3 P Q, Q R P R (P Q, Q R, P R ) (j1701) Part3 March 15, / 46

30 ,, (equivalent relation) 1 a a ( / Reflexive) 2 a b b a ( / Symmetric) 3 a b, b c a c ( / Transitive) (j1701) Part3 March 15, / 46

31 (j1701) Part3 March 15, / 46

32 1 3 0 def = def = def = 2 0, 1, 2, 0, 1, 2 Z 0 / def = { 0, 1, 2} Z 0 (quotient set) (j1701) Part3 March 15, / 46

33 !! X, X/ def = { x x X}, X (quotient set) ( x = {y X x y}) (j1701) Part3 March 15, / 46

34 V R-, W v w def v w W, V, V V/W def = V/, V/W V W (quotient linear space) (j1701) Part3 March 15, / 46

35 V/W = { v v V } R- x + ȳ = x + y c x = cx (j1701) Part3 March 15, / 46

36 well-defined ( ) v, w v, w v + w = v + w v v, w w, x, y W st v + x, w = w + y v + w = v + w = v + x + w + y = v + w + x + y = v + w + 0 = v + w (j1701) Part3 March 15, / 46

37 c v = c v v v, x W st v = v + x c v = cv = c(v + x) = cv + cx = cv + cx = cv + 0 = cv well-defined, V/W, 8, R- (j1701) Part3 March 15, / 46

38 f : V W, f (linear isomorphism) f f : V W, V, W, V, W (isomorphic), V W ( ) (j1701) Part3 March 15, / 46

39 ver f : V W f φ : V/Ker f Im f 4!! φ( v) = f(v) 1 φ well-defined ( ) 2 φ 3 φ 4 φ (j1701) Part3 March 15, / 46

40 φ well-defined v V/Ker f, v v v, x Ker f st v = v + x φ( v ) = f(v ) = f(v + x) = f(v) + f(x) = f(v) + 0 ( x Ker f), f(v ) = f(v), well-defined (j1701) Part3 March 15, / 46

41 φ φ(v + w) = f(v + w) = f(v) + f(w) = φ( v) + φ( w) φ(cv) = f(cv) = cf(v) = cφ( v), φ (j1701) Part3 March 15, / 46

42 φ f(v) Im f v V/Ker f, φ( v) = f(v), φ, f Ker f = {0} (!!) v Ker φ, φ( v) = f(v) = 0, v Ker f v = 0, Ker φ = { 0}, φ (j1701) Part3 March 15, / 46

43 V R-, W, dim V/W = dim V dim W Proof ( ) (j1701) Part3 March 15, / 46

44 (dimension theorem) f : V W dim (Im f) + dim (Ker f) = dim V Proof, dim, V/Ker f Im f, dim V dim (Ker f) = dim (Im f) (j1701) Part3 March 15, / 46

45 1, 2 3 ( ver) (j1701) Part3 March 15, / 46

46 Thank you!!! Good luck!!! (j1701) Part3 March 15, / 46

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S 12 2 e 2.1 2.1.1 S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image 2.1.2 s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

ビジネス交渉術入稿.indd

ビジネス交渉術入稿.indd Part1 1 1 6 1 2 8 1 3 10 1 4 12 1 5 14 Part1 16 Part2 Part2 Part3 2 1 18 2 2 20 2 3 22 2 4 24 2 5 26 2 6 28 2 7 30 2 8 32 2 Contents 2 9 34 2 10 36 2 11 38 40 Part3 3 1 42 3 2 44 3 3 46 3 4 48 3 5 50 3

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

Ver.1.0.1-1512 1. 03 2. 04 3. 05 05 4. 06 07 5. 08 6. 09 10 11 12 14 7. 19 2 1. Plus / 3 2. 1 4 3. Plus 5 4. FX 6 4. 7 5. 1 200 3 8 6. 38 25 16 9 6. 10 6. 11 6. 38 / 12 6. 13 6. 25 14 6. 0 359 15 6. 3

More information

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2 Morality mod Science 4 2017 10 19 1 1.1 (1.1) 1 2 A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B (1.2) 1 A B 2 B A 1.2 A B minao.kukita@gmail.com 1 A A A B A B A B A B

More information

CompuSec SW Ver.5.2 アプリケーションガイド(一部抜粋)

CompuSec SW Ver.5.2 アプリケーションガイド(一部抜粋) 64 PART 9 65 66 PART10 67 1 2 3 68 PART 10 4 5 69 1 2 3 4 5 70 PART 10 6 7 8 6 9 71 PART11 72 PART 11 1 2 3 73 4 5 6 74 PART 11 7 8 9 75 PART12 76 PART 12 1 2 3 4 1 2 3 4 77 1 2 3 4 5 6 7 8 78 PART13 79

More information

65歳雇用時代の賃金制度のつくり方

65歳雇用時代の賃金制度のつくり方 1 65 2005 2 65 18 65 2 PART 165 6 7 8 11 14 16 60 17 25 PART 2 28 35 () 10 35 () 35 () 36 () 39 () 39 () 41 () 42 () 42 () 44 (10) 44 (11) 47 1 15 2007 2 35 3 10 10 2.5 2.5 1.5 0.5 2.5 2.5 1.5 0.5 10

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

CompuSec SW アプリケーションガイド

CompuSec SW アプリケーションガイド CompuSec CompuSec SW Ver.5 Windows 2000/XP/Vista Contents PART.1 PART.2 PART.3 PART.4 2 PART.5 PART.6 PART.7 PART.8 PART.9 3 PART.10 PART.11 PART.12 PART.13 PART.14 4 5 PART1 6 PART 1 7 8 PART 1 9 PART2

More information

( ) ver.2015_01 2

( ) ver.2015_01 2 1 1.1 1.2 1.3 2 ( ) 2.1 2.2 2.3 2.4 3 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.3 7 7.1 7.2 7.3 8 ver.2015_01 2 1 1.1 1.2 1.3 ver.2015_01 3 2 2.1 2.2 2.3 ver.2015_01 4 2.4 ver.2015_01

More information

TABLE of CONTENTS 11 51 65 187 1 2 3 4 5 6 é é 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt 1 2 3 4 5 6 7 8 9 10 11 No Image No Image 12 13 14 15 16 17 18 19 20 21 22 23 No Image No Image No Image No Image 24 No Image No Image No Image No Image 25 No Image No Image No Image No Image 26 27 28

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1 5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)

More information

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x Z Z Ẑ 1 1.1 (X, d) X x 1, x 2,, x n, x x n x(n) ( ) X x x ε N N i, j i, j d(x(i), x(j)) < ε ( ) X x x n N N i i d(x(n), x(i)) < 1 n ( ) X x lim n x(n) X x X () X x, y lim n d(x(n), y(n)) = 0 x y x y 1

More information

Word 2000 Standard

Word 2000 Standard .1.1 [ ]-[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [OK] [ ] 1 .1.2 [ ]-[ ] [ ] [ ] [ [ ] [ ][ ] [ ] [ ] [ / ] [OK] [ ] [ ] [ ] [ ] 2 [OK] [ ] [ ] .2.1 [ ]-[ ] [F5] [ ] [ ] [] [ ] [ ] [ ] [ ] 4 ..1 [ ]-[ ] 5 ..2

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

PJta_h1h4_0329.ai

PJta_h1h4_0329.ai 0120-119-110 1-2-1 100-8050 http://www.tokiomarine-nichido.co.jp/ 24365 0120-691-300 98 http://www.tokiomarine-nichido.co.jp/ 201071 19 P.37 P.816 P.17 P.1819 contents 1 2 3 4 5 6 1 2 3 4 http://www.tokiomarine-nichido.co.jp/

More information

−ÈŁÛ05/‚æ4‘Í

−ÈŁÛ05/‚æ4‘Í CONTENTS 1. 50 2. 51 3. 52 52. 6 1 6 2 6 3 65 65 5. 66 6. 67 1 67 2 67 3 68 7. 69 8. 69 1 69 2 69 3 70 70 9. 71 9 1 50 2 51 52 3 53 5 55 56 57 58 59 60 61 62 63 1 2 6 3 65 5 66 6 1 2 67 3 68 7 8 1 2 69

More information

24_5章_01f

24_5章_01f CONTENTS p08 1 2 3 4 p14 p20 p24 p28 p40 03 04 05 4527,575 9 405,849 0.1 4,908 9405,849 17 790,361 74 3,331,365 6 243,400 34 1,554,738 51 2,318,680 161,853 122,460 9 410,863 163,253 3121,444 0.15,830 24

More information

untitled

untitled T O N E G U N 2012 S H I N K I N E R S U L O C S I D B A N K 1. 2. 3. CONTENTS 1. 2. 1. 2. 3. 4. 5. 02 03 04 05 17, 216 84362 1,63323 516 225 17 06 07 1,385 46 1 42 31 3.3% 2.2% 67.4% 08 09 10 1 3 2 1

More information

.\..

.\.. CONTENTS 2 4 7 8 10 12 14 19 22 28 31 35 39 40 41 47 54 59 68 71 79 83 90 1 CONTENTS 2 4 7 8 10 12 14 19 22 28 31 35 39 40 41 47 54 59 68 71 79 83 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

More information

名称未設定-1

名称未設定-1 Contents http://www.saitama-ctv-kyosai.net 2 250 554 810 13462 250 6318 7144 250 5710 7752 250 5078 8384 2 3201 32 3073 2 1478 1595 2 1382 1691 2 1382 1691 16535 8739 1 2 3 1 2 3 http://www.saitama-ctv-kyosai.net/

More information

海外旅行_2007pdf版

海外旅行_2007pdf版 CONTENTS 03 10 14 19 21 25 29 35 39 A. 3 4 1 2 3 4 5 6 7 8 9 10 5 6 8 7 A. 9 10 12 11 l 13 14 15 16 17 18 A. 19 20 A. 21 22 23 24 A. 25 26 27 28 29 30 31 32 33 34 A. 35 36 37 38 http://www.forth.go.jp/

More information

オートバイの保険.indd

オートバイの保険.indd 201211 P.37 P.816 P.17 P.1819 contents 1 2 3 4 5 6 1 18 1 2 16 3 11 4 5 7 8 6 18 9 10 6 7 8 9 10 11 12 11 13 12 5 13 14 14 15 18 16 19 17 20 21 0120-071-281 0570-022808 15 16 3 4 1 0 0 0 0 0 4 1 2 17 18

More information

untitled

untitled Contents 01 02 03 1 05 07 09 11 13 15 2 17 19 21 23 3 25 27 29 31 4 33 35 39 41 43 43 43 01 02 03 1 1 A A D C B A C D E D 2 3 4 5 05 1 A B C D E 2 3 4 5 06 1 A B C D 2 A B B C C E D A D E 3 A B C D E 4

More information

n_bead 4_14_NotOut

n_bead 4_14_NotOut http://www.nsswelding.co.jp CONTENTS 1 5 6 7 10 11 12 13 14 4 * * * * * 5 + + + + 6 * ** * 7 * * * * * * * 1 * * * * * * * 2 * * * * 9 * * * * * * 10 * * * * * 11 + + + + + + + + + + + 1 2 3 + + + +

More information

関西テレビ放送番組制作ガイドライン

関西テレビ放送番組制作ガイドライン Contents Contents Contents Contents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information