17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)
|
|
|
- ゆうりゅう こやぎ
- 6 years ago
- Views:
Transcription
1 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) Évariste Galois( ) 2) Joseph-Louis Lagrange( ) 18 3),Niels Henrik Abel( ) 4) 1
2 Q (α) (α β) 2 α + β II II 2 ax 2 + bx + c = 0 2 α, β α + β = b, αβ = c a a 1 2 2x 2 4x + 3 = 0 2 α, β (1) (α + 2) (β + 2) (2) β α + α β (3) (α β) 2 (4) α 3 β 3 2 7) 1(3)(α β) 2 8) 5) Felix Christian Klein( ) 6) Plato(B.C.427-B.C.347) 5 7) Albert Girard( ) 8) α β 2 2
3 n n 2 α, β α + β, αβ 2 3 α, β, γ 1 x 1 n n a 1, a 2, a 3,, a n 1, a n n x n 1 x n 2 x n 3 k=1 n 1 i,j n a k n a i a j 1 i,j,k n a i a j a k n x n p ( 1) p a i1 a i2 a ip 1 i 1,i 2,,i p n ( 1) n a 1 a 2 a 3 a n 1 a n n n n n 9) 10) 11) 12) 13) 19 14) 9) Gottfried Wilhelm Leibniz( ) 10) Leonhard Euler( )18 11) Carolus Fridericus Gauss( ) 12) Georg Ferdinand Ludwig Philipp Cantor( ) 13) Julius Wilhelm Richard Dedekind( ) 14) 3
4 2 C n a n x n +a n 1 x n 1 +a n 2 x n 2 + +a 2 x 2 +a 1 x+a 0 = 0 C n a 0, a 1, a 2,, a n C a n x n + a n 1 x n 1 + a n 2 x n a 2 x 2 + a 1 x + a 0 = a n (x r 1 ) (x r 2 ) (x r n ) r 0, r 1, r 2,, r n C 3 3 ax 3 + bx 2 + cx + d = 0 α, β, γ x, y, z 4 x, y (1) xy 2 z 3 x 2 yz 3 (2) xyz (3) xy + yz + zx (4) x 2 y + y 2 z + z 2 x 5 x yy zz x (1) xy 2 z 3 x 3 yz 2 (2) xyz (3) xy + yz + zx (4) x 2 y + y 2 z + z 2 x x yy zz x 15) 4(3) 5(4) x, y x 2 y + y 2 z + z 2 x xy 2 + yz 2 + zx 2 x yy zz x x 2 y + y 2 z + z 2 x x 2 y + y 2 z + z 2 x x, y, z x, y, z 6 3! = 6 4(1) 5(1) xy 2 z 3 x 2 y + y 2 z + z 2 x 6 2 β α 2 (β α) 2 15) C(3) 4
5 16) 3 D (3) 3 x, y, z 6 x, y, z xy 2 + z xy 2 + z xy 2 + z 120 x y y z z x x y z x xy 2 + z ( ) 240 x z y x z y x z y x xy 2 + z ( ) x x y z z y y z xy 2 + z ( ) 16) D (3) 5
6 y y x z z x x z xy 2 + z ( ) z z x y y x x y xy 2 + z ( ) 7 x 2 y + y 2 z + z 2 x 6 x 2 y + y 2 z + z 2 x ( ) 120 x 2 y + y 2 z + z 2 x ( ) 240 x 2 y + y 2 z + z 2 x ( ) x x 2 y + y 2 z + z 2 x ( ) y x 2 y + y 2 z + z 2 x ( ) z x 2 y + y 2 z + z 2 x ( ) x 2 y + y 2 z + z 2 x x, y, z xy 2 + yz 2 + zx 2 x 2 y + y 2 z + z 2 x 17) 3 f x 1, x 2,, x n f x 1, x 2,, x n s 1, s 2,, s n x 1, x 2,, x n f s 1, s 2,, s n 17) kenkyubu/kokai-koza/h16-mukai.pdf 6
7 n a n x n + a n 1 x n 1 + a n 2 x n a 2 x 2 + a 1 x + a 0 = 0 n n (1) a n x n +a n 1 x n 1 +a n 2 x n 2 + +a 2 x 2 +a 1 x+a 0 = 0 x 1, x 2,, x n (2) x 1, x 2,, x n ax 2 + bx + c = 0 α, β α, β (1) α + β = (2) αβ = (3) (α + β) 2 = (4) α 2 + β 2 = (5) (α β) 2 = (6) α β = (7) α = (8) β = α β α β β α (α β) 2 = α 2 2αβ + β 2 2 a, b, c ( α + ωβ + ω 2 γ ) ( α + ωβ + ω 2 γ 9 (1) ( α + ωβ + ω 2 γ ) (2) ( α + ωβ + ω 2 γ ( α + ωβ + ω 2 γ ) 6 ( α + ωβ + ω 2 γ ( α + ωβ + ω 2 γ )3 = ( α 3 + β 3 + γ 3) + 3ω ( α 2 β + β 2 γ + γ 2 α ) + 3ω 2 ( αβ 2 + βγ 2 + γα 2) + 6αβγ ( α + ωβ + ω 2 γ αβγ 7 α 2 β + β 2 γ + γ 2 α αβ 2 + βγ 2 + γα 2 7
8 18) ( α + ωβ + ω 2 γ ) 3 2 α β x 1, x 1, x n x i, x j i < j x i x j x 1, x 2 x 1 x 2 3 x 1, x 2, x 3 (x 1 x 2 ) (x 1 x 3 ) (x 2 x 3 ) x 1, x 2, x 3, x 4 3 (x 1 x 2 ) (x 1 x 3 ) (x 2 x 3 ) x 1 x 2 (x 1 x 2 ) x 1 x 2 (x 2 x 1 ) ( 1 k (x 1 x k ) (x 2 x k ) (x 2 x k ) (x 1 x k ) (x 1 x 2 ) ( 1) ( 1) ( 1) 3 ( 1) 12 6 (1) (2) 120 (3) 240 (4) x (5) y (6) z 18) D (3) C (3) 8
9 x 1 x 2 x 1 x x 1, x 2,, x n n n 2 α β n ( 1) x 3 + ax 2 + bx + c = 0 α, β, γ a, b, c (1) α + β + γ = (2) αβ + βγ + γα = (3) αβγ = x 3 + ax 2 + bx + c = 0 α, β, γ a, b, c (1) α 2 + β 2 + γ 2 = (2) α 2 β 2 + β 2 γ 2 + γ 2 α 2 = (3) αβ 2 + βγ 2 + γα 2 + α 2 β + β 2 γ + γ 2 α = 3 2 a, b, c 15 3 (α β) (α γ) (β γ) a, b, c (1) (α β) (β γ) β a, b (2) (β γ) (γ α) γ a, b (3) (γ α) (α β) α a, b (4) 2 {(α β) (α γ) (β γ)} 2 {(α β) (α γ) (β γ)} 2 = {(α β) (β γ) (γ α)} 2 (i) α 2 β 2 γ 2 = (ii) αβγ (αβ + βγ + γα) = (iii) αβγ (α + β + γ) = 9
10 (iv) αβ 2 + βγ 2 + γα 2 + α 2 β + β 2 γ + γ 2 α = (v) α 2 β 2 + β 2 γ 2 + γ 2 α 2 = (vi) α 2 + β 2 + γ 2 = (vii) α + β + γ = (viii) αβ + βγ + γα = (ix) αβγ = (5) (α β) (α γ) (β γ) a, b, c 16 ω ω 2 + ω + 1 = 0 3 x 3 + ax 2 + bx + c = 0 3 α, β, γ D = (α β) (α γ) (β γ) (i) D = (α β) (α γ) (β γ) (ii) ( α + ωβ + ω 2 γ a, b, c, D (iii) ( α + ω 2 β + ωγ a, b, c, D (iv) (α + β + γ) + ( α + ωβ + ω 2 γ ) + ( α + ω 2 β + ωγ ) = 3α 3 (v) a = 0, b = p, c = q (3) 3 19) ) ) ) 23) ) ) x 3 + px + q = ω x = 3 q ( q q ( q , ω 3 q ( q ω 2 3 q ( q , ω 2 3 q ( q ω q ( q ) D (3) 21) C (3) 22) 4 S (4) 23) 4 A (4) 24) 5 S (5) 25) 5 A (5) 10
11 α ω [1] Coxeter,H,S,M, (), (),, [2] Sautor,M, (),,, [3], 30,, [4] Klein,F., (), 20 5,, [5], 14,, [6],,, [7],,, [8],, 2011vol39-4,pp38-58,, [9],,, [10], 13,, [11],,, [12],, 2 α ω 53, pp47-57, [13], α ω 55, pp.54-65,
ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4
20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d
16 : 2015/11/4(23:14) (1891) (1995) (2002) 7 8 IT 20 ( ),,, 1979,,, 2010,,, , 13,, Évariste Galois
2 1 1 2000 2 (1891) 17 2 3 (1995) 4 5 6 (2002) 7 8 IT 20 ( ),,, 1979,,, 2010,,, 2010 13, 13,, 2011 13 1 Évariste Galois 1811-1832 2 Evgraf Stepanovich Fedorov 1853-1919) 1885 20 3 Andrew John Wiles, 1953-4
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
これわかWord2010_第1部_100710.indd
i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv
パワポカバー入稿用.indd
i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84
これでわかるAccess2010
i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
平成18年版 男女共同参画白書
i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45
エクセルカバー入稿用.indd
i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68
01_.g.r..
I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2
III 2017
III 2017 0 7 1 2 11 2 1 2.1............................... 1 2.2.................................. 16 n 15.1 n................................ 15.2 de Moivre............................. 15. 1 n.................................
ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7
活用ガイド (ソフトウェア編)
(Windows 95 ) ii iii iv NEC Corporation 1999 v P A R T 1 vi P A R T 2 vii P A R T 3 P A R T 4 viii P A R T 5 ix x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 6 5 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 4
困ったときのQ&A
ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1
活用ガイド (ソフトウェア編)
(Windows 98 ) ii iii iv v NEC Corporation 1999 vi P A R T 1 P A R T 2 vii P A R T 3 viii P A R T 4 ix P A R T 5 x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 5 6 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 10
パソコン機能ガイド
PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1
パソコン機能ガイド
PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22
1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3
3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22
『戦時経済体制の構想と展開』
1 15 15 17 29 36 45 47 48 53 53 54 58 60 70 88 95 95 98 102 107 116 v 121 121 123 124 129 132 142 160 163 163 168 174 183 193 198 205 205 208 212 218 232 237 237 240 247 251 vi 256 268 273 289 293 311
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
長崎県地域防災計画
i ii iii iv v vi vii viii ix - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - 玢 - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - -
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
™…
i 1 1 1 2 3 5 5 6 7 9 10 11 13 13 14 15 15 16 17 18 20 20 20 21 22 ii CONTENTS 23 24 26 27 2 31 31 32 32 33 34 37 37 38 39 39 40 42 42 43 44 45 48 50 51 51 iii 54 57 58 60 60 62 64 64 67 69 70 iv 70 71
漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト
https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
1... 1 1... 1 2... 1 3... 1 4... 4 5... 7 6... 7 7... 12 8... 12 9... 13 10... 13 11... 13 12... 14 2... 14 1... 14 2... 16 3... 18 4... 19 5... 19 6.
3 2620149 1 3 8 3 2 198809 1/1 198809 1 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 1... 1 2... 1 3... 1 4... 4 5... 7 6... 7 7... 12 8... 12
活用ガイド (ハードウェア編)
(Windows 98) 808-877675-122-A ii iii iv NEC Corporation 1999 v vi PART 1 vii viii PART 2 PART 3 ix x xi xii P A R T 1 2 1 3 4 1 5 6 1 7 8 1 9 10 11 1 12 1 1 2 3 13 1 2 3 14 4 5 1 15 1 1 16 1 17 18 1 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
i ii iii iv v vi vii viii ix x - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - -
7 i 7 1 2 3 4 5 6 ii 7 8 9 10 11 1 12 13 14 iii.......................................... iv................................................ 21... 1 v 3 6 7 3 vi vii viii ix x xi xii xiii xiv xv 26 27
入門ガイド
ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13
9 i 9 1 2 3 4 5 6 ii 7 8 9 10 11 12 .......................................... iii ... 1... 1........................................ 9 iv... v 3 8 9 3 vi vii viii ix x xi xii xiii xiv 34 35 22 1 2 1
i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi 2 3 4 5 6 7 $ 8 9 10 11 12 13 14 15 16 17 $ $ $ 18 19 $ 20 21 22 23 24 25 26 27 $$ 28 29 30 31 $ $ $ 32 33 34 $ 35 $ 36 $ 37 38 39 40 $ 41 42 43 44
困ったときのQ&A
ii iii iv NEC Corporation 1998 v C O N T E N T S PART 1 vi vii viii ix x xi xii PART 2 xiii PART 3 xiv P A R T 1 3 1 2 PART 3 4 2 1 1 2 4 3 PART 1 4 5 5 6 PART 1 7 8 PART 1 9 1 2 3 1 2 3 10 PART 1 1 2
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
(報告書まとめ 2004/03/ )
- i - ii iii iv v vi vii viii ix x xi 1 Shock G( Invention) (Property rule) (Liability rule) Impact flow 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 (
.....Z...^.[.......\..
15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z
262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...
44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)
(1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46
i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii
四校_目次~巻頭言.indd
107 25 1 2016 3 Key Words : A 114 67 58.84 Mann-Whitney 6 1. 2. 3. 4. 5. 6. I. 21 4 B 23 11 1 9 8 7 23456 108 25 1 2016 3 78 9 II. III. IV. 1. 24 4 A 114 2. 24 5 6 3. 4. 5. 3 42 5 16 6 22 5 4 4 4 3 6.
178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21
I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (
ONLINE_MANUAL
JPN ii iii iv v 6 vi vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 4 5 1-3 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5
ONLINE_MANUAL
JPN ii iii iv v vi 6 vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 1-3 4 5 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30
1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7
I
I II III IV V VI VII VIII IX X XI XII XIII XIV 1. 2 3 4 5 2. 6 7 8 3. 1 2 3 9 4 5 10 6 11 4. 1 2 3 1 2 12 1 2 3 1 2 3 13 14 1 2 1 15 16 1. 20 1 21 1 22 23 1 2 3 4 24 1 2 ok 25 1 2 26 1 2 3 27 2. 28
1... 1 2... 3 3... 5 1... 5 2... 6 4... 7 1... 7 2... 9 3... 9 6... 9 7... 11 8... 11 5... 7
3 2620149 1 3 6 3 2 198829 198829 19/2 19 2 3 4 5 JISJIS X 0208 : 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 3 3... 5 1... 5 2... 6 4... 7 1... 7 2... 9 3... 9 6... 9 7... 11 8...
四変数基本対称式の解放
The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe
zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {
04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
untitled
1998 6 25 ( ) 1 10 1982 10 28 37/7 1990 12 14 45/94 (WHO) 1 1989 12 8 NGO (ECE) 3 1995 10 25 ECE 1991 2 25 1992 3 17 1998 6 4 1 2 1. 2. a b c (a) (b) d 17 3. a b (a) c (b) 4. 5. 3 1. 2. 3. 4. 5. 6. 7.
2620149 3 8 2 198802 492/ 198802 492 1 4 5 JISJIS X 0208 : 1997 JIS JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 1... 1 2... 2 3... 2 4... 2 5... 3 6... 3 7... 4 8... 4 2... 4
Step2 入門
ii iii iv v vi NEC Corporation 1999 vii C O N T E N T S PART 1 PART 2 PART 3 viii PART 4 ix C O N T E N T S PART 5 x PART 6 xi C O N T E N T S PART 7 xii PART 8 PART 9 xiii C O N T E N T S xiv xv PART
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+
R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
1981 i ii ➀ ➁ 61
(autism) 1943 60 1981 i ii ➀ ➁ 61 DSM- 4 3 29 99 DSM- 62 1 2 3 4 4 vi 63 64 ix x xi 204 3 65 176 90 3 79 66 DSM- 82 67 68 ➀ ➁ ➂ 69 34 5 70 JR 71 i 1944 ii iii 28 72 iv 48 v ➀ vi PHP 39 vii 176 viii ➄ 77
