24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination

Size: px
Start display at page:

Download "24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination"

Transcription

1 24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination

2 SPAM SPAM SPAM SPAM SVM AdaBoost RandomForest SPAM SPAM UCI Machine Learning Repository Spambase SPAM SPAM SPAM Bayes % SPAM Bayes 42.8 % % SPAM AdaBoost Random Forest i

3 Abstract Performance Comparison of Machine Learning Algorithms for SPAM Discrimination Fujimori Natsuki Many other machine learning techniques are able to applied for classification, and quantitative comparison is required. In this research, Naive Bayes Classifier, Neural Network, Support Vector Machine (SVM), Bagging, AdaBoost, and Random Forest are applied to classify written in both English and Japanese in order to filter SPAM mail out. Those algorithms are compared with each other from a viewpoint of classification precision. For English classification, the dataset Spambase of UCI Machine Learning Repository is used. Total number of the data is 4601, and training data is from 500 to 4000, which are randomly selected, and the rest are the test data. For Japanese classification, original corpus is created and used. Total number of the data is 1400 and training data are randomly selected to SPAM in English discrimination is performed under the same conditions to compare the result of precision. As a result, for English SPAM distinction, all algorithms except Naive Bayes Classifier achieves the precision exceeding 90 %. Moreover, for Japanese SPAM, Naive Bayes Classifier became a distinction rate of 42.8 %, and % abtained by other algorithms. key words SPAM, Machine Learning, Naive Bayes Classifier, Neural Network, Support Vector Machine, Bagging, AdaBoost, Random Forest ii

4 (Bagging) AdaBoost Random Forest SPAM SPAM SPAM SPAM SVM iii

5 SVM SPAM A 29 iv

6 AdaBoost Random Forest SPAM SVM 8 SPAM SVM 8 SPAM SPAM SPAM SPAM A A A v

7 SPAM SPAM vi

8 1 SPAM [1] SPAM SPAM SPAM SPAM SPAM SPAM SPAM SPAM SPAM 6 SPAM 1

9 Bayes NN SVM AdaBoost Random Forest RF Hewlett-Packard Labs Mark Hopkins UCI Machine Learning Repository Spambase Data Set SPAM SPAM SPAM HAM 1400 TF IDF SPAM Bayes 5 90 SPAM Bayes SPAM 4 SPAM 2

10 2 SPAM Naive Bayes classifier P (B A) = P (A B)P (B) P (A) (2.1) P (A), P (B) A B P (B A) A B 100 SPAM SPAM 60 HAM B S SPAM B H HAM P (B S ) SPAM P (B H ) HAM P (B S ) = 40/100 = 0.4 P (B H ) = 60/100 = 0.6 SPAM P (A), P (A B) A = P (A = ) = (5+11)/100 = 0.16 P (A = B S ) SPAM 3

11 2.1 term SPAM HAM P (A = B S ) = 5/40 = P (A = B H ) = 11/60 = SPAM SPAM HAM P (B) P (A) 0.16 P (A B) HAM SPAM P (SP AM ) /0.16 = HAM P (HAM ) /0.16 = P (SP AM ) > P (HAM ) HAM Mozilla Thunderbird 4

12 入力層 中間層 出力層 x wih xi i h whk k xi... I H K 2.1 Neural Network David E. Rumelhart [3] y k = ϕ 0 (α k + Σ h w hk ϕ h (α h + Σ i w ih x i )) (2.2) ϕ α 5

13 w(j + 1) = w(j) + η δ R (2.3) w(j + 1) j + 1 w(j) j η δ R x1 マージン サポートベクター 0 x

14 2.4 (Bagging) Support Vector Machine, SVM Vladimir N.Vapnik 1992 SVM [2] SVM 2.4 (Bagging) B 個のブーストストラップに分割 学習データ 弱学習機 多数決 結果を出力 2.3 Bagging Leo Breiman

15 2.5 AdaBoost bootstrap n 2. m 3. h B B {h i i = 1, 2,..., B} H(x) = arg max {i h i = y} 2.5 AdaBoost 学習データ 分割 訓練データ テストデータ 重み wi 弱学習機 1 誤判別率 信頼度 α 重み更新 弱学習機 2 誤判別率 信頼度 α 重み更新 多数決 弱学習機 T 誤判別率 信頼度 α 重み更新 強学習機 2.4 AdaBoost 8

16 2.6 Random Forest AdaBoost Yoav Freund Robert Schapire 1996 AdaBoost 1/ AdaBoost AdaBoost 1. N 2. T 3. w ti = 1/N 4. t h α 7. w (h+1)i T 9. α 2.6 Random Forest Random Forest Leo Breiman Random Forest 9

17 2.7 学習データ ランダムサンプリング B 個のブーストストラップに分割 弱学習機 多数決 結果を出力 2.5 Random Forest Random Forest Random Forest 1. B Cross Validation

18 2.7 学習データ 分割 ⅰ 評価データ 訓練データ ⅱ 評価データ 訓練データ ⅷ 訓練データ 8 評価データ 1. a a

19 3 SPAM OS CPU 3.1 Windows 7 Enterprise Intel(R) Core(TM) i5-2400s 2.50GHz 4.00GB R x MeCab 3.2 SPAM SPAM UCI Machine Learning Repository Spambase Data Set 4601 Spam or NonSpam SPAM 2788 HAM

20 3.3 SPAM 3.3 SPAM SPAM データ 形態素解析 (RMeCab) 分かち書き (.csv file) 1.txt 2.txt 3.txt DF 総和 各単語が全文書中に出現した回数 (DF 値 ) および各単語の出現頻度総和を算出 上位 10% をコーパスの特徴量として抽出 SPAM

21 3.3 SPAM 4. Document Frequency, DF DF 10 % % SPAM HAM type

22 3.3 SPAM サイト 無料 様 今回

23 3.3 SPAM SPAM 600 HAM

24 SPAM Bayes NN SVM AdaBoost RF SPAM 17

25 4.1 SPAM 判別率 Bayes NN SVM バギング AdaBoost RF 訓練データ数 4.1 SPAM NN RF Random Forest

26 4.1 SPAM SVM ガウシアン 線形 多項式 タンジェントラプラシアン ベッセル ANOVA スプライン SVM 8 SPAM 判別率 訓練データ数 ガウシアン線形多項式タンジェントラプラシアンベッセル ANOVA スプライン 4.3 SVM 8 SPAM 4.2 SVM

27 4.1 SPAM % 6 Random Forest SVM RBF % Random Forest % 96.3 % SVM % AdaBoost % 94.3 % 80 % 20

28 SPAM Bayes NN SVM Bagging AdaBoost RF SPAM 判別率 Bayes NN SVM Bagging AdaBoost RF 訓練データ数 SPAM 21

29 4.2 SPAM SVM 50% SPAM 8 ANOVA 6 SPAM 90% % R 90% SPAM SPAM 4.6 NN RF Random Forest

30 4.2 SPAM Bayes NN SVM AdaBoost RF SPAM % SVM 23

31 4.2 SPAM 判別率 英文 日本語文 機械学習手法名 SPAM 24

32 5 SPAM SPAM 6 University of California, Irbine Machine Learning Repository 500 Random Forest SVM 8 ANOVA SPAM 1000 SVM SPAM SPAM 25

33 5 Free BSD 4 SNS 2 26

34

35 [1], 45, [2] Nello Cristianini, John Shawe-Taylor,,,p.9,. [3], R,p251,. 28

36 A 判別率 NN SVM バギング AdaBoost RF 訓練データ数 A

37 判別率 訓練データ数 ガウシアン線形多項式タンジェント ANOVA A 判別率 NN SVM Bagging AdaBoost RF 訓練データ数 A

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i 25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time

More information

Web Web Web Web Web, i

Web Web Web Web Web, i 22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity

More information

kut-paper-template.dvi

kut-paper-template.dvi 26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo

More information

Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i

Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i 21 Stock price forecast using text mining 1100323 2010 3 1 Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i Abstract Stock price forecast using text

More information

1 1 tf-idf tf-idf i

1 1 tf-idf tf-idf i 14 A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles 1055104 2003 1 31 1 1 tf-idf tf-idf i Abstract A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085211 このサンプルページの内容は, 初版 1 刷発行時のものです. Weka Weka 2014 2 i 1 1 1.1... 1 1.2... 3 1.3... 6 1.3.1 7 1.3.2 11

More information

2017 (413812)

2017 (413812) 2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has

More information

29 jjencode JavaScript

29 jjencode JavaScript Kochi University of Technology Aca Title jjencode で難読化された JavaScript の検知 Author(s) 中村, 弘亮 Citation Date of 2018-03 issue URL http://hdl.handle.net/10173/1975 Rights Text version author Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspa

More information

28 TCG SURF Card recognition using SURF in TCG play video

28 TCG SURF Card recognition using SURF in TCG play video 28 TCG SURF Card recognition using SURF in TCG play video 1170374 2017 3 2 TCG SURF TCG TCG OCG SURF Bof 20 20 30 10 1 SURF Bag of features i Abstract Card recognition using SURF in TCG play video Haruka

More information

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11 1-122013 1 2 1 2 20 2,000 2009 12 1 2 1,362 68.1 2009 1 1 9.5 1 2.2 3.6 0.82.9 1.0 0.2 2 4 3 1 2 4 3 Key words acupuncture and moxibustion Treatment with acupuncture, moxibustion and Anma-Massage-Shiatsu

More information

21 e-learning Development of Real-time Learner Detection System for e-learning

21 e-learning Development of Real-time Learner Detection System for e-learning 21 e-learning Development of Real-time Learner Detection System for e-learning 1100349 2010 3 1 e-learning WBT (Web Based training) e-learning LMS (Learning Management System) LMS WBT e-learning e-learning

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-GI-34 No /7/ % Selections of Discarding Mahjong Piece Using Neural Network Matsui

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-GI-34 No /7/ % Selections of Discarding Mahjong Piece Using Neural Network Matsui 2 3 2000 3.3% Selections of Discarding Mahjong Piece Using Neural Network Matsui Kazuaki Matoba Ryuichi 2 Abstract: Mahjong is one of games with imperfect information, and its rule is very complicated

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

kut-paper-template.dvi

kut-paper-template.dvi 14 Application of Automatic Text Summarization for Question Answering System 1030260 2003 2 12 Prassie Posum Prassie Prassie i Abstract Application of Automatic Text Summarization for Question Answering

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3

More information

FC741E2_091201

FC741E2_091201 T101-1587-04 1 2 2 0 0 9 2 0 0 8 0 9 0 1 0 5 0 9 1 4 0 5 1 0 5 5 1 2 3 4 4 5 6 7 8 9 1 2 3 0 3 3 0 2 1 1 5 0 1 3 3 3 0 2 0 3 0 3 4 0 9 1 1 0 9 0 9 1 1 5

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi ODA Department of Human and Mechanical Systems Engineering,

More information

Support Vector Machine (SVM) 4 SVM SVM 2 80% 100% SVM SVM SVM 4 SVM 2 2 SVM 4

Support Vector Machine (SVM) 4 SVM SVM 2 80% 100% SVM SVM SVM 4 SVM 2 2 SVM 4 Analysis of Groove Feelings of Drums Plays 47 56340 19 1 31 Support Vector Machine (SVM) 4 SVM SVM 2 80% 100% SVM SVM SVM 4 SVM 2 2 SVM 4 1 1 1.1........................................ 1 1.1.1.............................

More information

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [ Vol.2, No.x, April 2015, pp.xx-xx ISSN xxxx-xxxx 2015 4 30 2015 5 25 253-8550 1100 Tel 0467-53-2111( ) Fax 0467-54-3734 http://www.bunkyo.ac.jp/faculty/business/ 1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The

More information

262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...

More information

,,.,,., II,,,.,,.,.,,,.,,,.,, II i

,,.,,., II,,,.,,.,.,,,.,,,.,, II i 12 Load Dispersion Methods in Thin Client Systems 1010405 2001 2 5 ,,.,,., II,,,.,,.,.,,,.,,,.,, II i Abstract Load Dispersion Methods in Thin Client Systems Noritaka TAKEUCHI Server Based Computing by

More information

四校_目次~巻頭言.indd

四校_目次~巻頭言.indd 107 25 1 2016 3 Key Words : A 114 67 58.84 Mann-Whitney 6 1. 2. 3. 4. 5. 6. I. 21 4 B 23 11 1 9 8 7 23456 108 25 1 2016 3 78 9 II. III. IV. 1. 24 4 A 114 2. 24 5 6 3. 4. 5. 3 42 5 16 6 22 5 4 4 4 3 6.

More information

SNS ( ) SNS(Social Networking Service) SNS SNS i

SNS ( ) SNS(Social Networking Service) SNS SNS i 22 SNS Job-Hunting Activities situation Understanding Support System Using SNS 1110252 2011 03 01 SNS ( ) SNS(Social Networking Service) SNS SNS i Abstract Job-Hunting Activities situation Understanding

More information

840 Geographical Review of Japan 73A-12 835-854 2000 The Mechanism of Household Reproduction in the Fishing Community on Oro Island Masakazu YAMAUCHI (Graduate Student, Tokyo University) This

More information

25 Removal of the fricative sounds that occur in the electronic stethoscope

25 Removal of the fricative sounds that occur in the electronic stethoscope 25 Removal of the fricative sounds that occur in the electronic stethoscope 1140311 2014 3 7 ,.,.,.,.,.,.,.,,.,.,.,.,,. i Abstract Removal of the fricative sounds that occur in the electronic stethoscope

More information

先端社会研究 ★5★号/4.山崎

先端社会研究 ★5★号/4.山崎 71 72 5 1 2005 7 8 47 14 2,379 2,440 1 2 3 2 73 4 3 1 4 1 5 1 5 8 3 2002 79 232 2 1999 249 265 74 5 3 5. 1 1 3. 1 1 2004 4. 1 23 2 75 52 5,000 2 500 250 250 125 3 1995 1998 76 5 1 2 1 100 2004 4 100 200

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

soturon.dvi

soturon.dvi 12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm

More information

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i 24 Region-Based Image Retrieval using Color Histogram Feature 1130340 2013 3 1 (VKIR) VKIR VKIR DCT (R) (G) (B) 64 64 Ward 20 1 20 1 20. 5 10 2 DCT i Abstract Region-Based Image Retrieval using Color Histogram

More information

,,,,., C Java,,.,,.,., ,,.,, i

,,,,., C Java,,.,,.,., ,,.,, i 24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children

More information

24 Depth scaling of binocular stereopsis by observer s own movements

24 Depth scaling of binocular stereopsis by observer s own movements 24 Depth scaling of binocular stereopsis by observer s own movements 1130313 2013 3 1 3D 3D 3D 2 2 i Abstract Depth scaling of binocular stereopsis by observer s own movements It will become more usual

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

日本人英語学習者の動機付け―JGSS-2003のデータ分析を通して―

日本人英語学習者の動機付け―JGSS-2003のデータ分析を通して― 日本版 General Social Surveys 研究論文集 [4] JGSS で見た日本人の意識と行動 JGSS Research Series No.1 Motivation of Japanese English learners From the data of JGSS-2003 Kaoru KOISO By analyzing the data of JGSS-2003 with χ

More information

28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment

28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment 28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment 1170288 2017 2 28 Docker,.,,.,,.,,.,. Docker.,..,., Web, Web.,.,.,, CPU,,. i ., OS..,, OS, VirtualBox,.,

More information

活用ガイド (ハードウェア編)

活用ガイド (ハードウェア編) (Windows 98) 808-877675-122-A ii iii iv NEC Corporation 1999 v vi PART 1 vii viii PART 2 PART 3 ix x xi xii P A R T 1 2 1 3 4 1 5 6 1 7 8 1 9 10 11 1 12 1 1 2 3 13 1 2 3 14 4 5 1 15 1 1 16 1 17 18 1 19

More information

振動充填燃料の粒子焼結試験実施計画書

振動充填燃料の粒子焼結試験実施計画書 C JNCTJ8410 2004-006 2004 3 ( ) UPRISE Nd 250mL 0.2 mol Nd Nd (FP)DF DOBA DOiBA NN'-2--1.6 mol/l NN'- -1.7 mol/l NN'-1.5 mol/l DOBA 1mol/L 3.5mol/L 2 NN'--1.7 mol/l NN' -1.5 mol/l ZrRu Ce DF 150 100 Sr

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: [email protected], {ide,murase,hirayama}@is.nagoya-u.ac.jp,

More information

★保健医療科学_第67巻第2号.indb

★保健医療科学_第67巻第2号.indb Vol. No.p. Evidence Based Public Health: ICT/AI Issues of the internet environment in local governments Norihiko Ito 1), Hiroshi Mizushima 2) ) Hokkaido Mombetsu Health Center (Concurrently) Hokkaido Mombetsu

More information

86 Development of a Course Classification Support System for the Awarding of Degrees using Syllabus Data MIYAZAKI Kazuteru, IDA Masaaki, YOSHIKANE Fuyuki, NOZAWA Takayuki and KITA Hajime Research in Academic

More information

<95DB8C9288E397C389C88A E696E6462>

<95DB8C9288E397C389C88A E696E6462> 2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,

More information

7,, i

7,, i 23 Research of the authentication method on the two dimensional code 1145111 2012 2 13 7,, i Abstract Research of the authentication method on the two dimensional code Karita Koichiro Recently, the two

More information

52-2.indb

52-2.indb Jpn. J. Health Phys., 52 (2) 55 60 (2017) DOI: 10.5453/jhps.52.55 * 1 * 2 * 2 * 3 * 3 2016 10 28 2017 3 8 Enhancement of Knowledge on Radiation Risk Yukihiko KASAI,* 1 Hiromi KUDO,* 2 Masahiro HOSODA,*

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title 特別支援を要する児童生徒を対象としたタブレット端末 における操作ボタンの最適寸法 Author(s) 竹財, 大輝 ; 塚本, 光夫 Citation 日本産業技術教育学会九州支部論文集, 23: 61-

熊本大学学術リポジトリ Kumamoto University Repositor Title 特別支援を要する児童生徒を対象としたタブレット端末 における操作ボタンの最適寸法 Author(s) 竹財, 大輝 ; 塚本, 光夫 Citation 日本産業技術教育学会九州支部論文集, 23: 61- 熊本大学学術リポジトリ Kumamoto University Repositor Title 特別支援を要する児童生徒を対象としたタブレット端末 における操作ボタンの最適寸法 Author(s) 竹財, 大輝 ; 塚本, 光夫 Citation 日本産業技術教育学会九州支部論文集, 23: 61-68 Issue date 215 Type URL Right Journal Article http://hdl.handle.net/2298/3622

More information

OJT Planned Happenstance

OJT Planned Happenstance OJT Planned Happenstance G H J K L M N O P Q R . %. %. %. %. %. %. %. %. %. %. %. %. %. %. %. %. %. %. .... Q ......... . Planned Happenstance.. pp.- VOL.,NO. pp., Current Status of Ritsumeikan Employees

More information

02[021-046]小山・池田(責)岩.indd

02[021-046]小山・池田(責)岩.indd Developing a Japanese Enryo-Sasshi Communication Scale: Revising a Trial Version of a Scale Based on Results of a Pilot Survey KOYAMA Shinji and IKEDA Yutaka Toward exploring Japanese Enryo-Sasshi communication

More information

[2] 1. 2. 2 2. 1, [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

[2] 1. 2. 2 2. 1, [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7 32 (2015 ) [2] Projects of the short term increase at present. In order to let projects complete without rework and delays, it is important that request for proposals (RFP) are written by reflecting precisely

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information