[1] SBS [2] SBS Random Forests[3] Random Forests ii
|
|
|
- しなつ あかさか
- 8 years ago
- Views:
Transcription
1 Random Forests A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki
2 [1] SBS [2] SBS Random Forests[3] Random Forests ii
3 Random Forests Random Forests iii
4 ii 1 Random Forests SFS SBS s r SFFS iv
5 v
6 1.1 Random Forests Random Forests Random Forests ( [5] ) Random Forests ( [9] ) Semantic Texton Forests Random Forests ( [8] ) Hough Forests ( [6] ) SFS SBS fold cross-validation Pendigits Waveform Spambase Optdigits vi
7 Random Forests vii
8 1 Random Forests Random Forests 1.1 Random Forests Random Forests Randomized Forests Randomized Trees, Randomized Deicision Forests Random Forests Random Forests Breiman [3] Bagging[4] Random Feature Selection [5] [6] [7] [8] Random Forests Random Forests 1.1 (Split Node) (Leaf Node) 1
9 t 1 t T 1.1: Random Forests Random Forests Require: : I Require: : T Require: : D Require: T : I = (I 1, I 2,..., I T ). Require: : F Require: : T H 1: For k = 1,..., T 2: I k 3: For l = 1,..., F 4: - f 5: - For m = 1,..., T H 6: 7: t f t I l I r 8: - I l = {i I n f(v i ) < t} 9: - I r = I n \ I l 10: E 11: - E = I l I n l) Ir I n r) 12: if E > E old f, t, I l, I r 13: - end for 14: end for 15: if gain = 0 D 16: - P (c l) 17: 18: else I l, I r end for 2
10 1.1. I T D I = (I 1, I 2,..., I T ) F T H F,T H f t f t Random Feature Selection F T H F T H E E n I n f t 1.1, (1.2) I l I r I l = {i I n f(v i ) < t} (1.1) I r = I n \ I l (1.2) I l I r (1.3) E E = E(I) I l I n E(I l) I r I n E(I r) (1.3) E(I) (1.4)( ) (1.5)( ) E(I) = n p(c i ) log p(c i ) (1.4) i=1 E(I) = n p(c i )(1 p(c i )) (1.5) i=1 p(c i ) c i ( ) 0 l P (c l) 3
11 v P (c l) (P 1 (c l), P 2 (c l),..., P T (c l)) P (c v) P (c v) = 1 T T P t (c l) (1.6) t=1 C i = arg max c i P (c i v) (1.7) 1.2: Random Forests 4
12 Random Forests Amit 1.3(a) Random Forests 1.3(b) [5] 1.3: Random Forests ( [5] ) Lepetit 1.4 Random Forests [9] 5
13 1.3. 応用例 (a) パッチを学習した RTs (b) 射影変化に頑健な結果 図 1.4: Random Forests を用いた特徴点マッチング (文献 [9] より引用) Shotton 等は図 1.5 に示すように画像パッチを Semantic Texton Forests Features 特徴 量を用いて Random Forests により学習する Semantic Texton Forests を提案した [7] Semantic Texton Forests は Moosmann 等の手法と同様に ノードを visual word とする ことにより 特徴表現を行うことができ これを用いてセマンティックセグメンテーショ ン 画像識別が可能であることを実験により示している 正解画像 A[g] -B[b] > 28 入力画像 A[b] -B[g] > 37 A[r] + B[r] > 363 A[b] + B[b] > 284 A[g] -B[b] > 13 画像パッチ A[b] > 98 A[r] -B[b] > 21 図 1.5: Semantic Texton Forests 6
14 1.3. Shotton 1.6 Random Forests [8] CG 31 2 Random Forests 3 1.6: Random Forests ( [8] ) Gall 1.7 Hough image Hough Forests [6] Hough image Hough Forests 1.7: Hough Forests ( [6] ) 7
15 1.3. [7] [5] [9] [8] [6] 8
16 2 2.1 n d SFS SBS s r SFFS 9
17 n d n C d n d [10] d [10] 2.1 v 1, v 2, v 3 2.1: [%] v 1 7 v 2 14 v 3 21 (v 1, v 3 ) 4 (v 1, v 2 ) SFS Whiteney (Sequential Forward Selection)[11] SFS
18 d v 1,v,...,v 2 n v 1 v 2 v n max v,v,...,v 1 3 n 2.1: SFS SBS SFS Marill (Sequential Backward Selection)[2] SBS
19 2.1. v,v,...,v 1 2 n v,v,...,v v,v,...,v v,v,...,v 2 3 n 1 3 n 1 2 n-1 max v 1,v 3,...,vn v2 2.2: SBS s r Stearns s r [12] SFS SBS k X k 1. X k+s X k SFS s 2. X k+s r X k+s SBS r 3. d = k + s r 1 2 s > r s = 2, r = 1 s r s r s = 1, r = 0 SFS s = 0, r = 1 SBS 12
20 SFFS Pudil SFFS (Sequential Floating Forward Selection)[13] s r s, r SFFS k = 0 1. SFS k k k SBS k = d 1 SFFS SFS SBS 13
21 3 Random Forests 3.1 Random Forests Random Forests C(v d ) (3.1) C(v d ) j d v d S d S (3.1) d 14
22 3.1. v d j T S d S C(v d ) = T t=1 j f(v d ) S t,j j J S t,j 100 (3.1) f(v d ) f (v ) d I n y f (v d ) x I l I r 3.1: 3.2 t 1 t 1 t 1 t 1 v 1 v 2 v 3 v 4 v 5 v 6 C(v 2 ) t 1 v 1 v 2 v 3 v 4 v 5 v 6 C(v 4 ) t 1 v 1 v 2 v 3 v 4 v 5 v 6 3.2: 15
23 Random Forests : Random Forests
24 : 17
25 SBS(Sequential Backward Selection) 10% UCI Machine Learning Repository[14] UCI Machine Learning Repository UCI Machine Learning Repository Pendigits, Waveform, Spambase, Optdigits
26 : Pendigits Waveform Spambase Optdigits Random Forests : Random Forests Pendigits Waveform Spambase Optdigits cross-validation [15] Seymour Geisser K-fold cross-validation K-fold cross-validation N K K K 1 K-fold cross-validation K 19
27 4.2. K K N K 3 3-fold cross-validation 3-fold cross-validation : 3-fold cross-validation SBS 10% 4.2, 4.3, 4.4, 4.5 SBS SBS 20
28 : Pendigits 4.3: Waveform 21
29 : Spambase 4.5: Optdigits 22
30 % : SBS [ ] [ ] [ ] Pendigits (16) Waveform (21) Spambase (57) Optdigits (64) SBS 3 10% : 23
31 4.2. Pendigits SBS 9 Pendigits 38 SBS SBS 24
32 Random Forests 1 Random Forests Random Forests 2 3 Random Forests 2 4 SBS Spambase Optdigits 25
33 SBS SFS 26
34 27
35 [1] vol. 48, no. 16, pp. 1-24, [2] Marill, T, D. M. Green, On the effectiveness of receptors in recognition system, IEEE Trans. Inform. Theory 9, pp , [3] L. Breiman, Random Forests, Machine Learning, vol. 45, no. 1, pp. 5-32, [4] L. Breiman, Bagging Predictors, Machine Learning, vol. 24, no. 2, pp , [5] Y. Amit, G. August and D. Geman: Shape quantization and recognition with randomized trees, Neural Computation, no. 9, pp , [6] Gall, J. and Yao, A. and Razavi, N. and Van Gool, L. and Lempitsky, V., Hough forests for object detection, tracking, and action recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp , [7] J. Shotton, M. Johnson and R. Cipolla, Semantic texton forests for image categorization and segmentation, Computer Vision and Pattern Recognition, [8] J. Shotton,and A. Fitzgibbon, and Cook, M. and Sharp, T. and Finocchio, M. and Moore, R. and Kipman, A. and Blake, A., Real-time human pose recognition in parts from single depth images, Computer Vision and Pattern Recognition, [9] V. Lepetit and p. Fua, Keypoint recognition using randomized trees, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp ,
36 [10],, pp [11] Whitney, A. W, A direct method of nonparametric measurement selection, IEEE Trans. Comput.20,pp , [12] S. D. Stearns: On selecting features for pattern classifies, Proc. Third Internat. Conf. Pattern Recognition, pp , [13] P. Pudil, J. Novovicora and J. Kittler: Floating search methods in feature selection, Pattern Recognition Letters, Vol. 15, No. 11, pp , [14] UCI Machine Learning Repository, [15] Kohavi, Ron: A study of cross-validation and bootstrap for accuracy estimation and model selection,
37 Random Forests ( )
% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii
2012 3 A Graduation Thesis of College of Engineering, Chubu University High Accurate Semantic Segmentation Using Re-labeling Besed on Color Self Similarity Yuko KAKIMI 2400 90% 2 3 [1] Semantic Texton
す 局所領域 ωk において 線形変換に用いる係数 (ak 画素の係数 (ak bk ) を算出し 入力画像の信号成分を bk ) は次式のコスト関数 E を最小化するように最適化 有さない画素に対して 式 (2) より画素値を算出する される これにより 低解像度な画像から補間によるアップサ E(
IR E-mail: [email protected] Abstract IR RGB ( ) IR IR IR RGB RGB PSNR 1 Time-Of- Flight(TOF)[1] Kinect [2] TOF LED TOF [3] [6] [4][5] 2 [6] RGB ( ) Infrared(IR) IR 2 2.1 1 す 局所領域 ωk において 線形変換に用いる係数 (ak
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
,,.,.,,.,.,.,.,,.,..,,,, i
22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of
1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +
3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa
3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) [email protected]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
入門ガイド
ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,
[II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
KinecV2 2.2 Kinec Kinec [8] Kinec Kinec [9] KinecV1 3D [10] Kisikidis [11] Kinec Kinec Kinec 3 KinecV2 PC 1 KinecV2 Kinec PC Kinec KinecV2 PC KinecV2
Kinec Developmen of Moion Capure Sysem using Muliple Kinecs 1 1 1 Miyaake Jumpei 1 Ohubo Masakazu 1 Yoshida Kaori 1 1 1 Graduae School of Life Science and Sysems Enginnering, Kyushu Insiue of echnology
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server
a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,
これわかWord2010_第1部_100710.indd
i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv
パワポカバー入稿用.indd
i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84
これでわかるAccess2010
i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77
262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)
(1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46
i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii
IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.
HARK-Binaural Raspberry Pi 2 1,a) 1 1 1 2 3 () HARK 2 HARK-Binaural A/D Raspberry Pi 2 1. [1,2] [2 5] () HARK (Honda Research Institute Japan audition for robots with Kyoto University) *1 GUI ( 1) Python
平成18年版 男女共同参画白書
i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45
178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21
I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (
1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30
1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7
(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)
(MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, [email protected], [email protected],
LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R
DEIM Forum 24 F5-4 Local Binary Pattern 6 84 E-mail: {tera,kida}@ist.hokudai.ac.jp Local Binary Pattern (LBP) LBP 3 3 LBP 5 5 5 LBP improved LBP uniform LBP.. Local Binary Pattern, Gradient Local Auto-Correlations,,,,
3 Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2]
3 E-mail: {akizuki}@isl.sist.chukyo-u.ac.jp Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2] Shape Index [3] [4][5] 3 SHOT [6] [7] Point Pair Feature
24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination
24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination 1130378 2013 3 9 SPAM SPAM SPAM SPAM SVM AdaBoost RandomForest SPAM SPAM UCI Machine Learning Repository Spambase 4601
1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means
Web, Web k-means 62% Associating Faces and Names in Web Photo News Akio Kitahara and Keiji Yanai We propose a system which extracts faces and person names from news articles with photographs on the Web
IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [
,a),b),,,,,,,, (DNN),,,, (CNN),,.,,,,,,,,,,,,,,,,,, [], [6], [7], [], [3]., [8], [0], [7],,,, Tohoku University a) [email protected] b) [email protected], [3],, (DNN), DNN, [3],
..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i
25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time
エクセルカバー入稿用.indd
i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68
1
10 200 15 20 50 (1) (2) 45 A4 JICA 15 WS 1 [] a. b. 10 A 30 15 15 NGO PC 5 15 15 15 15 NGO 1948 1970 10 NGO 90 AB 40 40 WS 1 NGO 40 WS Q 43 63 73 15 9 8 5 5 4 63 17 9 8 6 6 4 2000 14 15 100 2000 1
01_.g.r..
I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2
ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7
色の類似性に基づいた形状特徴量CS-HOGの提案
IS3-04 第 18 回 画 像 センシングシンポジウム, 横 浜, 2012 年 6 月 CS-HOG CS-HOG : Color Similarity-based HOG feature Yuhi Goto, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University E-mail: [email protected] Abstract
Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],
1 1 1 Structure from Motion - 1 Ville [1] NAC EMR-9 [2] 1 Osaka University [3], [4] 1 1(a) 1(c) 9 9 9 c 216 Information Processing Society of Japan 1 Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b)
AccessflÌfl—−ÇŠš1
ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS
: W, k : C 1,, C k 1. W D ii = j W ij D 2. W, D L = I D 1/2 W D 1/2 L 3. L, k U 4. U k-means C 3: 2: 3. ( ) k-means 10 1 0 688 3.1 HITS k-means k-mean
人 工 知 能 学 会 研 究 会 資 料 SIG-FIN-013-07 Attempt Diversification by Clustering of Investment Trusts 1 Takumasa Sakakibara 2 Tohgoroh Matsui 1 Atsuko Mutoh 1 Nobuhiro Inuduka 1 Department of Computer Science
