_Vol16No2.indd

Size: px
Start display at page:

Download "11020070-0_Vol16No2.indd"

Transcription

1 2552 チュートリアル BLAS, LAPACK 2 1 BLAS, LAPACKチュートリアル パート1 ( 簡 単 な 使 い 方 とプログラミング) 中 田 真 秀 1 読 者 の 想 定 BLAS [1], LAPACK [2] 2 線 形 代 数 の 重 要 性 について Google Page Rank 3D CPU 筆 者 紹 介 BLAS LAPACK 3 BLAS, LAPACKとは 何 か: 世 界 最 高 の 線 形 代 数 演 算 パッケージ BLAS [1] LAPACK [2] BLAS, LAPACK (1)BLAS とは? BLAS Basic Linear Algebra Subprograms FORTRAN77 BLAS BLAS reference BLAS BLAS Level 1, Level 2Level 3 x, y, A, B, C 36 計 算 工 学

2 BLAS, LAPACK Level 1 BLAS - DAXPY DDOT y αx + y dot x T y Level 2 BLAS - -DGEMV y αax + βy DTRSV x A 1 b Level 3 BLAS- - DGEMM DSYRK C αab + βc C αaa T + βc BLAS, LAPACKを 使 う 上 での 注 意 点 BLAS, LAPACK FORTRAN (1)Column major, row majorに 注 意 2 1 column major, row major 1, 4, 2, 5, 3, 6 1column major 1, 2, 3, 4, 5, 6 2row major FROTRAN, Matlab, Octave column major C, C++ row major C, C++ DTRSM B αa 1 B 7 9 Quick reference (2)LAPACK とは? LAPACK Linear Algebra PACKage BLAS LU QR Schur Schur BLAS 3.2Fortran /2/ C API, CS Level 3 BLAS CPU, OS web 9000 図 1 Column Major: 行 列 のデータは 列 方 向 にメモリに 格 納 される 図 2 Row Major: 行 列 のデータは 行 方 向 にメモリに 格 納 される 図 3 Leading Dimensionの 考 え 方 :M N 行 列 Aは より 大 きなLDA N 行 列 の 部 分 行 列 と 扱 うことがある Vol.16, No

3 2554 (2) 行 列 のLeading dimensionとは? leading dimension 3 BLAS, LAPACK LDA, LDB M N A LDA N A i, j C/C++ A[i + j*m] A[i + j*lda] LU Chokesky LAPACK (3)FORTRAN, C, C++ の 配 列 のスタートの 違 い FORTRAN 1C, C N FOR- TRAN0 n C, C++ x i FORTRAN X I C, C++ x[i-1] A i, j FORTRAN A I,J C, C++ column major A[i 1+ j 1 * lda] 5 BLAS, LAPACKの 現 状 について BLAS, LAPACK reference BLAS L1, L2, L3 BLAS 1970 Intel MKL Math Kernel Library AMD ACML AMD Core Math Library GotoBLAS2 ATLAS BLAS, LAPACK GotoBLAS2Intel MKL GotoBLAS2 [3] GotoBLAS2 BLAS, LAPACK CPU, OS BLASLAPACK3.1.1 ATLAS [4] R.Clint Whaley BLAS LAPACK BLAS 2001 GotoBLAS2 %10% BLAS, LAPACK BLAS, LAPACK Gaussian, Gamess, ADF, VASP CPLEX, NUOPT, GLPK Ruby, Python, Perl, Java, C, Mathematica, Maple, Matlab, R, octave, SciLab Top 500 [5] Top 500LINPACK DGEMM - BLAS, LAPACK [6] ScaLAPACK GPU BLAS, LAPACK [7] CPU CPU 10 nvidia GPU MAGMA BLAS, LAPACK [8] Krylov BLAS,LAPACK MPACK 6 Ubuntu 10.04x86(Lucid Lynx)デスクトップ 版 でBLAS, LAPACKを 実 際 に 使 ってみる BLAS, LAPACK GotoBLAS2 Octave [9] C++ BLAS, LAPACK OS Mac Linux Windows (1) 前 準 備 OS Ubuntu x86 Lucid Lynx [10] OS 38 計 算 工 学

4 BLAS, LAPACK VirtualBox [11] /home/maho $ \ $ sudo apt-get install patch gfortran g++ \ libblas-dev octave3.2 (2)GotoBLAS2のインストール GotoBLAS $ cd ; cp <somewhere>/gotoblas2-1.13_bsd.tar.gz. $ tar xvfz GotoBLAS2-1.13_bsd.tar.gz $ cd GotoBLAS2 $./quickbuild.64bit... ln -fs libgoto2_nehalemp-r1.13.so libgoto2.so GotoBLAS build complete. OS...Linux Architecture...x86_64 BINARY...64bit C compiler...gcc(command line : gcc) Fortran compiler...gfortran \ (command line : gfortran) Library Name...libgoto2_nehalemp-r1.13.a\ (Multi threaded; Max num-threads is 8) Intel Core i GHz 2 (3)OctaveでGotoBLAS2の 威 力 を 体 感 する Octave [9] Matlab BLAS, LAPACK Intel Core i GHz, TurboBoost 42.56GFlops, 1GFlops 1 reference BLAS, ATLAS, GotoBLAS2 GFlops BLAS DGEMM BLAS, LAPACK reference $ LD_PRELOAD=/usr/lib/libblas.so:\ /usr/lib/liblapack.so; export LD_PRELOAD ATLAS Ubuntu $ LD_PRELOAD=/usr/lib/atlas/libblas.so:/usr/\ lib/atlas/liblapack.so; export LD_PRELOAD $ LD_PRELOAD=/home/maho/GotoBLAS2/\ libgoto2.so; export LD_PRELOAD BLAS $ octave... GFLOPS = % Ubuntu ATLAS $ LD_PRELOAD=/usr/lib/atlas/libblas.so; \ export LD_PRELOAD $ octave... GFLOPS = % ATLAS ATLAS GFLOPS = % GotoBLAS2 $ LD_PRELOAD=/home/maho/GotoBLAS2/libgoto2.so ;\ export LD_PRELOAD $ octave... GFLOPS = % octave:1> n=4000; A=rand(n); B=(A+A )/2; octave:2> tic(); eig(b); toc(); GotoBLAS2 Vol.16, No

5 2556 Elapsed time is seconds. reference BLAS Elapsed time is seconds. ATLAS Elapsed time is seconds. ATLAS Elapsed time is seconds. ans=[ [ 2.10e+01, 3.36e+02, 7.08e+01];\ [ -6.40e+01, 5.14e+02, 9.50e+01];\ [ 2.10e+02, 3.10e+01, 4.75e+01] ] #check by Matlab/Octave by: alpha * A * B + beta * C (5)LAPACK 実 習 :C++から 行 列 の 固 有 ベクトル 固 有 値 を 求 めるDSYEVを 使 ってみる LAPACK C++ DSYEV GotoBLAS2 ATLAS 4.2 ATLAS reference BLAS GotoBLAS2 (4)BLAS 実 習 :C++から 行 列 - 行 列 積 DGEMMを 使 う - DGEMM α=3, β= 2 C αab + βc 4 $ g++ -static -pthread dgemm_demo.cpp -o \ dgemm_demo -L/home/maho/GotoBLAS2/ -lgoto2 Octave & $./dgemm_demo # dgemm demo... A =[ [ 1.00e+00, 8.00e+00, 3.00e+00];\ [ 2.00e+00, 1.00e+01, 8.00e+00];\ [ 9.00e+00, -5.00e+00, -1.00e+00] ] B =[ [ 9.00e+00, 8.00e+00, 3.00e+00];\ [ 3.00e+00, 1.10e+01, 2.30e+00];\ [ -8.00e+00, 6.00e+00, 1.00e+00] ] C =[ [ 3.00e+00, 3.00e+00, 1.20e+00];\ [ 8.00e+00, 4.00e+00, 8.00e+00];\ [ 6.00e+00, 1.00e+00, -2.00e+00]] alpha = 3.000e+00 beta = e+00 // dgemm test public domain #include <stdio.h> extern "C" { #define ADD_ #include <cblas_f77.h> //Matlab/Octave format void printmat(int N, int M, double *A, int LDA) { double mtmp; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { mtmp = A[i + j * LDA]; printf("%5.2e", mtmp); if (j < M - 1) printf(", "); if (i < N - 1) printf("]; "); else printf("] "); printf("]"); int main() { int n = 3; double alpha, beta; double *A = new double[n*n]; double *B = new double[n*n]; double *C = new double[n*n]; A[0+0*n]=1; A[0+1*n]= 8; A[0+2*n]= 3; A[1+0*n]=2; A[1+1*n]=10; A[1+2*n]= 8; A[2+0*n]=9; A[2+1*n]=-5; A[2+2*n]=-1; B[0+0*n]= 9; B[0+1*n]= 8; B[0+2*n]=3; B[1+0*n]= 3; B[1+1*n]=11; B[1+2*n]=2.3; B[2+0*n]=-8; B[2+1*n]= 6; B[2+2*n]=1; C[0+0*n]=3; C[0+1*n]=3; C[0+2*n]=1.2; C[1+0*n]=8; C[1+1*n]=4; C[1+2*n]=8; C[2+0*n]=6; C[2+1*n]=1; C[2+2*n]=-2; printf("# dgemm demo...\n"); printf("a =");printmat(n,n,a,n);printf("\n"); printf("b =");printmat(n,n,b,n);printf("\n"); printf("c =");printmat(n,n,c,n);printf("\n"); alpha = 3.0; beta = -2.0; F77_dgemm("n", "n", &n, &n, &n, &alpha, A, &n, B, &n, &beta, C, &n); printf("alpha = %5.3e\n", alpha); printf("beta = %5.3e\n", beta); printf("ans="); printmat(n,n,c,n); printf("\n"); 40 計 算 工 学

6 BLAS, LAPACK printf("#check by Matlab/Octave by:\n"); printf("alpha * A * B + beta * C =\n"); delete[]c; delete[]b; delete[]a; 図 4 C++でのDGEMMのサンプル 行 列 - 行 列 積 を 求 め る ファイル 名 は dgemm_demo.cpp とすること , , v 1, v 2, v 3 v 1= , , v 2= , , v 3= , , $ g++ -static -pthread eigenvalue_demo.cpp \ -o eigenvalue_demo -L/home/maho/GotoBLAS2/ \ -lgoto2 -lgfortran Octave & $./eigenvalue_demo A =[ [ 1.00e+00, 2.00e+00, 3.00e+00];\ [ 2.00e+00, 5.00e+00, 4.00e+00];\ [ 3.00e+00, 4.00e+00, 6.00e+00] ] #eigenvalues w =[ [ -4.10e-01]; [ 1.58e+00]; [ 1.08e+01] ] #eigenvecs U =[ [ -9.14e-01, 2.16e-01, 3.42e-01];\ [ 4.01e-02, -7.93e-01, 6.08e-01];\ [ 4.03e-01, 5.70e-01, 7.16e-01] ] #Check Matlab/Octave by: eig(a) U *A*U //dsyev test public domain #include <iostream> #include <stdio.h> extern "C" int dsyev_(const char *jobz, const char *uplo, int *n, double *a, int *lda, double *w, double *work, int *lwork, int *info); //Matlab/Octave format void printmat(int N, int M, double *A, int LDA) { double mtmp; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { mtmp = A[i + j * LDA]; printf("%5.2e", mtmp); if (j < M - 1) printf(", "); if (i < N - 1) printf("]; "); else printf("] "); printf("]"); int main() { int n = 3; int lwork, info; double *A = new double[n*n]; double *w = new double[n]; //setting A matrix A[0+0*n]=1;A[0+1*n]=2;A[0+2*n]=3; A[1+0*n]=2;A[1+1*n]=5;A[1+2*n]=4; A[2+0*n]=3;A[2+1*n]=4;A[2+2*n]=6; printf("a ="); printmat(n, n, A, n); printf("\n"); lwork = -1; double *work = new double[1]; dsyev_("v", "U", &n, A, &n, w, work, &lwork, &info); lwork = (int)work[0]; delete[]work; work = new double[std::max((int) 1, lwork)]; //get Eigenvalue dsyev_("v", "U", &n, A, &n, w, work, &lwork, &info); //print out some results. printf("#eigenvalues \n"); printf("w ="); printmat(n, 1, w, 1); printf("\n"); printf("#eigenvecs \n"); printf("u ="); printmat(n, n, A, n); printf("\n"); printf("#check Matlab/Octave by:\n"); printf("eig(a)\n"); printf("u'*a*u\n"); delete[]work; delete[]w; delete[]a; 図 5 C++でのDSYEV 対 角 化 固 有 ベクトルを 求 めるサ ンプル ファイル 名 は eigenvalue_demo.cpp とする こと 7 終 わりと 次 回 予 告 BLAS LAPACK 謝 辞 参 考 文 献 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Vol.16, No

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1 .. BLAS LAPACK 1, 2013/05/23 CMSI A 1 / 43 BLAS LAPACK (I) BLAS, LAPACK BLAS : - LAPACK : 2 / 43 : 3 / 43 (wikipedia) V : f : V u, v u + v u + v V α K u V αu V V x, y f (x + y) = f (x) + f (y) V x K α

More information

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1 1 / 50 BLAS LAPACK 1, 2015/05/21 CMSI A 2 / 50 BLAS LAPACK (I) BLAS, LAPACK BLAS : - LAPACK : 3 / 50 ( ) 1000 ( ; 1 2 ) :... 3 / 50 ( ) 1000 ( ; 1 2 ) :... 3 / 50 ( ) 1000 ( ; 1 2 ) :... 3 / 50 ( ) 1000

More information

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1 1 / 56 BLAS LAPACK 1, 2017/05/25 CMSI A 2 / 56 BLAS LAPACK (I) BLAS, LAPACK BLAS : - LAPACK : 3 / 56 ( ) 1000 ( ; 1 2 ) :... 3 / 56 ( ) 1000 ( ; 1 2 ) :... 3 / 56 ( ) 1000 ( ; 1 2 ) :... 3 / 56 ( ) 1000

More information

11050427-0_Vol16No3.indd

11050427-0_Vol16No3.indd 2599 チュートリアル BLAS, LAPACK 2 2 GPU BLAS, LAPACKチュートリアル パート2 (GPU 編 ) 中 田 真 秀 1 はじめに GPU Graphics Processing Unit BLAS, LAPACK GPU GPU NVIDIA AMD AMD RADEON HD NVIDIA NVIDIA GPU NVIDIA C2050 BLAS, LAPACK

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

理研スーパーコンピュータ・システム

理研スーパーコンピュータ・システム 線形代数演算ライブラリ BLAS と LAPACK の基礎と実践 2 理化学研究所情報基盤センター 2013/5/30 13:00- 大阪大学基礎工学部 中田真秀 この授業の目的 対象者 - 研究用プログラムを高速化したい人 - LAPACK についてよく知らない人 この講習会の目的 - コンピュータの簡単な仕組みについて - 今後 どうやってプログラムを高速化するか - BLAS, LAPACK

More information

倍々精度RgemmのnVidia C2050上への実装と応用

倍々精度RgemmのnVidia C2050上への実装と応用 .. [email protected] http://accc.riken.jp/maho/,,, 2011/2/16 1 - : GPU : SDPA-DD 10 1 - Rgemm : 4 (32 ) nvidia C2050, GPU CPU 150, 24GFlops 25 20 GFLOPS 15 10 QuadAdd Cray, QuadMul Sloppy Kernel QuadAdd Cray,

More information

CMSI教育計算科学技術特論A_中田真秀

CMSI教育計算科学技術特論A_中田真秀 線形代数演算ライブラリBLAS とLAPACKの基礎と実践 (I) BLAS, LAPACK入門編 中田 真秀 理化学研究所 情報システム本部 2019/5/23 計算科学技術特論A BLAS, LAPACK入門編 講義目的 線形代数演算をコンピュータで行うには 必ずBLAS LAPACKのお世話になる 使うには(若干)知識がいる 実際にUbuntu Linuxで試せる形で提示し 使えるよう になる

More information

4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司

4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司 4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司 3 1 1 日本原子力研究開発機構システム計算科学センター 2 理科学研究所計算科学研究機構 3 東京大学新領域創成科学研究科

More information

Untitled

Untitled VASP 2703 2006 3 VASP 100 PC 3,4 VASP VASP VASP FFT. (LAPACK,BLAS,FFT), CPU VASP. 1 C LAPACK,BLAS VASP VASP VASP VASP bench.hg VASP CPU CPU CPU northwood LAPACK lmkl lapack64, BLAS lmkl p4 LA- PACK liblapack,

More information

3.2 Linux root vi(vim) vi emacs emacs 4 Linux Kernel Linux Git 4.1 Git Git Linux Linux Linus Fedora root yum install global(debian Ubuntu apt-get inst

3.2 Linux root vi(vim) vi emacs emacs 4 Linux Kernel Linux Git 4.1 Git Git Linux Linux Linus Fedora root yum install global(debian Ubuntu apt-get inst 1 OS Linux OS OS Linux Kernel 900 1000 IPA( :http://www.ipa.go.jp/) 8 12 ( ) 16 ( ) 4 5 22 60 2 3 6 Linux Linux 2 LKML 3 3.1 Linux Fedora 13 Ubuntu Fedora CentOS 3.2 Linux root vi(vim) vi emacs emacs 4

More information

インテル(R) Visual Fortran Composer XE

インテル(R) Visual Fortran Composer XE Visual Fortran Composer XE 1. 2. 3. 4. 5. Visual Studio 6. Visual Studio 7. 8. Compaq Visual Fortran 9. Visual Studio 10. 2 https://registrationcenter.intel.com/regcenter/ w_fcompxe_all_jp_2013_sp1.1.139.exe

More information

ストリーミング SIMD 拡張命令2 (SSE2) を使用した SAXPY/DAXPY

ストリーミング SIMD 拡張命令2 (SSE2) を使用した SAXPY/DAXPY SIMD 2(SSE2) SAXPY/DAXPY 2.0 2000 7 : 248600J-001 01/12/06 1 305-8603 115 Fax: 0120-47-8832 * Copyright Intel Corporation 1999, 2000 01/12/06 2 1...5 2 SAXPY DAXPY...5 2.1 SAXPY DAXPY...6 2.1.1 SIMD C++...6

More information

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G 211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double

More information

DPD Software Development Products Overview

DPD Software Development Products Overview 2 2007 Intel Corporation. Core 2 Core 2 Duo 2006/07/27 Core 2 precise VTune Core 2 Quad 2006/11/14 VTune Core 2 ( ) 1 David Levinthal 3 2007 Intel Corporation. PC Core 2 Extreme QX6800 2.93GHz, 1066MHz

More information

64bit SSE2 SSE2 FPU Visual C++ 64bit Inline Assembler 4 FPU SSE2 4.1 FPU Control Word FPU 16bit R R R IC RC(2) PC(2) R R PM UM OM ZM DM IM R: reserved

64bit SSE2 SSE2 FPU Visual C++ 64bit Inline Assembler 4 FPU SSE2 4.1 FPU Control Word FPU 16bit R R R IC RC(2) PC(2) R R PM UM OM ZM DM IM R: reserved (Version: 2013/5/16) Intel CPU ([email protected]) 1 Intel CPU( AMD CPU) 64bit SIMD Inline Assemler Windows Visual C++ Linux gcc 2 FPU SSE2 Intel CPU double 8087 FPU (floating point number processing unit)

More information

Second-semi.PDF

Second-semi.PDF PC 2000 2 18 2 HPC Agenda PC Linux OS UNIX OS Linux Linux OS HPC 1 1CPU CPU Beowulf PC (PC) PC CPU(Pentium ) Beowulf: NASA Tomas Sterling Donald Becker 2 (PC ) Beowulf PC!! Linux Cluster (1) Level 1:

More information

(Basic Theory of Information Processing) 1

(Basic Theory of Information Processing) 1 (Basic Theory of Information Processing) 1 10 (p.178) Java a[0] = 1; 1 a[4] = 7; i = 2; j = 8; a[i] = j; b[0][0] = 1; 2 b[2][3] = 10; b[i][j] = a[2] * 3; x = a[2]; a[2] = b[i][3] * x; 2 public class Array0

More information

. UNIX, Linux, KNOPPIX. C,.,., ( 1 ) p. 2

. UNIX, Linux, KNOPPIX. C,.,., ( 1 ) p. 2 2009 ( 1 ) 2009 ( 1 ) p. 1 . UNIX, Linux, KNOPPIX. C,.,.,. 2009 ( 1 ) p. 2 , +, ( ), ( ), or PC orange2, knxm2008vm, iyokan-6 KNOPPIX/Math (DVD ) 2009 ( 1 ) p. 3 ,. Mathematica (20-30 /1 ), Maple (20 /1

More information

2 2.1 Mac OS CPU Mac OS tar zxf zpares_0.9.6.tar.gz cd zpares_0.9.6 Mac Makefile Mekefile.inc cp Makefile.inc/make.inc.gfortran.seq.macosx make

2 2.1 Mac OS CPU Mac OS tar zxf zpares_0.9.6.tar.gz cd zpares_0.9.6 Mac Makefile Mekefile.inc cp Makefile.inc/make.inc.gfortran.seq.macosx make Sakurai-Sugiura z-pares 26 9 5 1 1 2 2 2.1 Mac OS CPU......................................... 2 2.2 Linux MPI............................................ 2 3 3 4 6 4.1 MUMPS....................................

More information

2008 ( 13 ) C LAPACK 2008 ( 13 )C LAPACK p. 1

2008 ( 13 ) C LAPACK 2008 ( 13 )C LAPACK p. 1 2008 ( 13 ) C LAPACK LAPACK p. 1 Q & A Euler http://phase.hpcc.jp/phase/mppack/long.pdf KNOPPIX MT (Mersenne Twister) SFMT., ( ) ( ) ( ) ( ). LAPACK p. 2 C C, main Asir ( Asir ) ( ) (,,...), LAPACK p.

More information

C

C C 1 2 1.1........................... 2 1.2........................ 2 1.3 make................................................ 3 1.4....................................... 5 1.4.1 strip................................................

More information

14 2 Scilab Scilab GUI インタグラフ プリタ描画各種ライブラリ (LAPACK, ODEPACK, ) SciNOTES ハードウェア (CPU, GPU) 21 Scilab SciNotes 呼び出し 3 変数ブラウザ 1 ファイルブラウザ 2 コンソール 4 コマンド履歴

14 2 Scilab Scilab GUI インタグラフ プリタ描画各種ライブラリ (LAPACK, ODEPACK, ) SciNOTES ハードウェア (CPU, GPU) 21 Scilab SciNotes 呼び出し 3 変数ブラウザ 1 ファイルブラウザ 2 コンソール 4 コマンド履歴 13 2 Scilab Scilab Scilab 21 Scilab Scilab[4] INRIA C/C++, Fortran LAPACK Matlab Scilab Web http://wwwscilaborg/ 2016 4 552 Windows 10/8x MacOS X, Linux Scilab Octave Matlab (Matlab Toolbox) (Mathematica

More information

2 1. Ubuntu 1.1 OS OS OS ( OS ) OS ( OS ) VMware Player VMware Player jp/download/player/ URL VMware Plaeyr VMware

2 1. Ubuntu 1.1 OS OS OS ( OS ) OS ( OS ) VMware Player VMware Player   jp/download/player/ URL VMware Plaeyr VMware 1 2010 [email protected] http://www.jsk.t.u-tokyo.ac.jp/~k-okada/lecture/ 2010 4 5 Linux 1 Ubuntu Ubuntu Linux 1 Ubuntu Ubuntu 3 1. 1 Ubuntu 2. OS Ubuntu OS 3. OS Ubuntu https://wiki.ubuntulinux.jp/ubuntutips/install/installdualboot

More information

bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows ˆ Windows10 64bit Wi

bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows ˆ Windows10 64bit Wi Windows bash on Ubuntu on Windows [Windows Creators Update(1703) ] TAKE 2017-10-06 bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu on Windows bash on Ubuntu

More information

1 (bit ) ( ) PC WS CPU IEEE754 standard ( 24bit) ( 53bit)

1 (bit ) ( ) PC WS CPU IEEE754 standard ( 24bit) ( 53bit) GNU MP BNCpack [email protected] 2002 9 20 ( ) Linux Conference 2002 1 1 (bit ) ( ) PC WS CPU IEEE754 standard ( 24bit) ( 53bit) 10 2 2 3 4 5768:9:; = %? @BADCEGFH-I:JLKNMNOQP R )TSVU!" # %$ & " #

More information

3 Java 3.1 Hello World! Hello World public class HelloWorld { public static void main(string[] args) { System.out.println("Hello World");

3 Java 3.1 Hello World! Hello World public class HelloWorld { public static void main(string[] args) { System.out.println(Hello World); (Basic Theory of Information Processing) Java (eclipse ) Hello World! eclipse Java 1 3 Java 3.1 Hello World! Hello World public class HelloWorld { public static void main(string[] args) { System.out.println("Hello

More information

スパコンに通じる並列プログラミングの基礎

スパコンに通じる並列プログラミングの基礎 2016.06.06 2016.06.06 1 / 60 2016.06.06 2 / 60 Windows, Mac Unix 0444-J 2016.06.06 3 / 60 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 0444-J 2016.06.06 4 / 60 ( : ) 6 6 ( ) 6 10 6 16 SX-ACE 6 17

More information

64bit SSE2 SSE2 FPU Visual C++ 64bit Inline Assembler 4 FPU SSE2 4.1 FPU Control Word FPU 16bit R R R IC RC(2) PC(2) R R PM UM OM ZM DM IM R: reserved

64bit SSE2 SSE2 FPU Visual C++ 64bit Inline Assembler 4 FPU SSE2 4.1 FPU Control Word FPU 16bit R R R IC RC(2) PC(2) R R PM UM OM ZM DM IM R: reserved (Version: 2013/7/10) Intel CPU ([email protected]) 1 Intel CPU( AMD CPU) 64bit SIMD Inline Assemler Windows Visual C++ Linux gcc 2 FPU SSE2 Intel CPU double 8087 FPU (floating point number processing unit)

More information

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU..... CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................

More information

c a a ca c c% c11 c12

c a a ca c c% c11 c12 c a a ca c c% c11 c12 % s & % c13 c14 cc c16 c15 %s & % c211 c21% c212 c21% c213 c21% c214 c21% c215 c21% c216 c21% c23 & % c24 c25 c311 c311 % c% c % c312 %% a c31 c315 c32 c33 c34 % c35 c36 c411 c N

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

ex01.dvi

ex01.dvi ,. 0. 0.0. C () /******************************* * $Id: ex_0_0.c,v.2 2006-04-0 3:37:00+09 naito Exp $ * * 0. 0.0 *******************************/ #include int main(int argc, char **argv) { double

More information

Slide 1

Slide 1 OpenMX のコンパイル方法 Truong Vinh Truong Duy (The University of Tokyo) 2014/10/10 OpenMX のダウンロード 1. OpenMX のダウンロード % wget http://www.openmx-square.org/openmx3.7.tar.gz % tar openmx3.7.tar.gz 2. パッチのダウンロード %

More information

[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T

[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T LAN Android Transmission-Control Middleware on multiple Android Terminals in a WLAN Environment with consideration of Round Trip Time Ai HAYAKAWA, Saneyasu YAMAGUCHI, and Masato OGUCHI Ochanomizu University

More information

1 1 2 2 2.1 Java......... 2 2.2................................. 3 2.3.................................. 3 3 4 3.1....................................

1 1 2 2 2.1 Java......... 2 2.2................................. 3 2.3.................................. 3 3 4 3.1.................................... 06H082 1 1 2 2 2.1 Java......... 2 2.2................................. 3 2.3.................................. 3 3 4 3.1..................................... 4 3.2 GP.....................................

More information

( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I

(    CUDA CUDA CUDA CUDA (  NVIDIA CUDA I GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA

More information

高性能計算研究室の紹介 High Performance Computing Lab.

高性能計算研究室の紹介 High Performance Computing Lab. 高性能計算研究室 (HPC Lab) の紹介 High Performance Computing Lab. 静岡理工科大学総合情報学部コンピュータシステム学科 ( 兼 Web デザイン特別プログラム ) 幸谷智紀 http://na-inet.jp/ 概要 1. 幸谷智紀 個人の研究テーマ 2. 3 年生ゼミ ( 情報セミナー II) 3. 卒研テーマ 4. Webデザイン特別プログラム 5. 今後について

More information

PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU

PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU 1. 1.1. 1.2. 1 PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU 2. 2.1. 2 1 2 C a b N: PC BC c 3C ac b 3 4 a F7 b Y c 6 5 a ctrl+f5) 4 2.2. main 2.3. main 2.4. 3 4 5 6 7 printf printf

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

Intel® Compilers Professional Editions

Intel® Compilers Professional Editions 2007 6 10.0 * 10.0 6 5 Software &Solutions group 10.0 (SV) C++ Fortran OpenMP* OpenMP API / : 200 C/C++ Fortran : OpenMP : : : $ cat -n main.cpp 1 #include 2 int foo(const char *); 3 int main()

More information

10/ / /30 3. ( ) 11/ 6 4. UNIX + C socket 11/13 5. ( ) C 11/20 6. http, CGI Perl 11/27 7. ( ) Perl 12/ 4 8. Windows Winsock 12/11 9. JAV

10/ / /30 3. ( ) 11/ 6 4. UNIX + C socket 11/13 5. ( ) C 11/20 6. http, CGI Perl 11/27 7. ( ) Perl 12/ 4 8. Windows Winsock 12/11 9. JAV [email protected] [email protected] http://www.misojiro.t.u-tokyo.ac.jp/ tutimura/sem3/ 2002 12 11 p.1/33 10/16 1. 10/23 2. 10/30 3. ( ) 11/ 6 4. UNIX + C socket 11/13 5. ( ) C 11/20

More information

: : : TSTank 2

: : : TSTank 2 Java (8) 2008-05-20 Lesson6 Lesson5 Java 1 Lesson 6: TSTank1, TSTank2, TSTank3 java 2 car1 car2 Car car1 = new Car(); Car car2 = new Car(); car1.setcolor(red); car2.setcolor(blue); car2.changeengine(jet);

More information

電気通信大学 I 類 情報系 情報 ネットワーク工学専攻 CED 2018 システム利用ガイド ver1.2 CED 管理者 学術技師 島崎俊介 教育研究技師部 実験実習支援センター 2018 年 3 月 29 日 1 ログイン ログアウト手順について 1.1 ログイン手順 CentOS 1. モニ

電気通信大学 I 類 情報系 情報 ネットワーク工学専攻 CED 2018 システム利用ガイド ver1.2 CED 管理者 学術技師 島崎俊介 教育研究技師部 実験実習支援センター 2018 年 3 月 29 日 1 ログイン ログアウト手順について 1.1 ログイン手順 CentOS 1. モニ 電気通信大学 I 類 情報系 情報 ネットワーク工学専攻 CED 2018 システム利用ガイド ver1.2 CED 管理者 学術技師 島崎俊介 教育研究技師部 実験実習支援センター 2018 年 3 月 29 日 1 ログイン ログアウト手順について 1.1 ログイン手順 CentOS 1. モニタと端末の電源を入れる 2. GNU GRUB version 2.02 Beta2-36ubuntu3

More information

76

76 ! # % & % & %& %& " $ 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 % & &! & $ & " & $ & # & ' 91 92 $ % $'%! %(% " %(% # &)% & 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 !$!$ "% "%

More information

スパコンに通じる並列プログラミングの基礎

スパコンに通じる並列プログラミングの基礎 2018.06.04 2018.06.04 1 / 62 2018.06.04 2 / 62 Windows, Mac Unix 0444-J 2018.06.04 3 / 62 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 2018.06.04 4 / 62 0444-J ( : ) 6 4 ( ) 6 5 * 6 19 SX-ACE * 6

More information

Microsoft PowerPoint - sales2.ppt

Microsoft PowerPoint - sales2.ppt 最適化とは何? CPU アーキテクチャに沿った形で最適な性能を抽出できるようにする技法 ( 性能向上技法 ) コンパイラによるプログラム最適化 コンパイラメーカの技量 経験量に依存 最適化ツールによるプログラム最適化 KAP (Kuck & Associates, Inc. ) 人によるプログラム最適化 アーキテクチャのボトルネックを知ること 3 使用コンパイラによる性能の違い MFLOPS 90

More information

comment.dvi

comment.dvi ( ) (sample1.c) (sample1.c) 2 2 Nearest Neighbor 1 (2D-class1.dat) 2 (2D-class2.dat) (2D-test.dat) 3 Nearest Neighbor Nearest Neighbor ( 1) 2 1: NN 1 (sample1.c) /* -----------------------------------------------------------------

More information

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.

More information

ARM gcc Kunihiko IMAI 2009 1 11 ARM gcc 1 2 2 2 3 3 4 3 4.1................................. 3 4.2............................................ 4 4.3........................................

More information

ex01.dvi

ex01.dvi ,. 0. 0.0. C () /******************************* * $Id: ex_0_0.c,v.2 2006-04-0 3:37:00+09 naito Exp $ * * 0. 0.0 *******************************/ #include int main(int argc, char **argv) double

More information

cpp1.dvi

cpp1.dvi 2017 c 1 C++ (1) C C++, C++, C 11, 12 13 (1) 14 (2) 11 1 n C++ //, [List 11] 1: #include // C 2: 3: int main(void) { 4: std::cout

More information