4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司

Size: px
Start display at page:

Download "4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司"

Transcription

1 4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司 日本原子力研究開発機構システム計算科学センター 2 理科学研究所計算科学研究機構 3 東京大学新領域創成科学研究科

2 1. Introduction はじめに 京 コンピュータのような超大規模な並列計算機が一般ユーザでも利用できる環境 大規模並列計算機の性能をフルに利用するため シミュレーション手法の大規模化 演算回数が増大するため 本来無限桁である実数を有限桁で打ち切って計算することによる誤差の累積の影響が大きくなる 倍精度演算では有効な精度の結果が得られない可能性あり 地球シミュレータで 375,000 次元の行列の全固有値 固有ベクトルを直接法で計算 精度は数ケタ (SC06 Yamada et. al.)

3 4 倍精度化の方法 [ 対応策 多倍長 (4 倍精度 ) 計算 ] real*16 変数を利用計算時間がかかるため実用的でない 多倍長計算用のライブラリ Bailey の double-double アルゴリズム 2 つの倍精度実数 (real*8) を組み合わせることで 4 倍精度演算を実現倍精度演算の組み合わせなので高速に計算可能 a=a.hi+a.lo a.hi : 上位データ a.lo : 下位データ 倍精度の仮数部は 52bit で表現しているため この方法だと 104bit で表現 (real*16 の場合仮数部は 112bit)

4 2. double-double algorithm 2 つの倍精度実数 (real*8) を組み合わせて 4 倍精度演算を実現 double-double 型実数 a (ah,al) ah: 上位データ (real*8), al: 下位データ (real*8) 52bit( 仮数部 ) 52bit( 仮数部 ) 104bit( 仮数部 ) [10 進約 32 桁 ] REAL*16 型実数 112bit( 仮数部 ) [10 進約 34 桁 ]

5 Dailey の 4 倍精度演算アルゴリズム [Bailey の 4 倍精度演算アルゴリズム ] Bailey の double-double アルゴリズムによる加算 C=A+B Bailey の double-double アルゴリズムによる乗算 C=A*B 11 回の演算で実現可能 コンパイラの最適化で 計算順序変更不可 24 回の演算で実現可能 (= ) 上位 26bit, 下位 26bit のデータに分割する際に利用

6 3. 4 倍精度化 BLAS BLAS (Basic Linear Algebra Subprograms) 線形基本演算のルーチン群 (40 個 ) double-double アルゴリズムで 4 倍精度化 QPBLAS (Quadrature Precision Basic Linear Algebra Subprograms) 倍精度版 [ ルーチン名の接頭辞にdをつけて倍精度を表現 ] call dgemm( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LCD) 4 倍精度版 [ ルーチン名の接頭辞にddをつけて4 倍精度を表現 ] call ddgemm( TRANSA, TRANSB, M, N, K, ALPHAH, ALPHAL, AH, AL, LDA, BH, BL, LDB, BETAH, BETAL, CH, CL, LCD) (*H : 4 倍精度の上位データ *L : 4 倍精度の下位データ )

7 3.1 QPBLAS QPBLAS の性能評価の性能評価 DDDOT ( 内積 ) DDGEMV( 行列ベクトル積 ) DDGEMM( 行列行列積 ) の性能評価 使用する計算機 Intel/ Windows Processor : Intel Core 2 Duo E8400 (3.0GHz) OS : Windows XP Professional Compiler : Intel Fortran 10.0 IA32 AMD/ Linux Processor : Dual Core AMD Opteron Processor 2800 (2.4GHz) OS : Cent OS 4.4 Compiler : gfortran 4.1.0

8 3.1 DDDOT および DDGEMV の性能評価 DDDOT( 内積計算 ) [α x T y] 計算時間は次元サイズに比例 AMD の方が若干早い DDGEMV( 行列ベクトル積 ) 計算時間 ( 秒 ) [y αax + βy] TRANS= N 計算時間は次元サイズの 2 乗に比例 最適化をした Intel が早い 計算時間 ( 秒 ) Intel O0 Intel O2 Intel O AMD O0 AMD O2 AMD O Intel O0 Intel O2 Intel O3 配列次元 AMD O0 AMD O2 AMD O 配列次元

9 3.1 DDGEMM の性能評価 計算時間 ( 秒 ) Intel O0 Intel O2 Intel O3 500 AMD O0 AMD O2 AMD O 配列次元 DDGEMM( 行列行列積 ) [C αab + βc] TRANSA= N, TRANSB= N 計算時間は次元サイズの 3 乗に比例 Intel の方が早い DGEMM と DDGEMM の性能比較 (DDGEMM の計算時間 /DGEM の計算時間 ) 最適化 O2,O3(Intel) DGEMM と DDGEMM の計算時間比は最大 10 倍程度 計算時間の増加率 配列次元

10 3.2 QPBLAS の公開 HP QPBLAS の公開 HP ライセンスオープンソース (2 条項 BSDライセンス ) [subrou^nes] Level 1 Level 2 Level 3 ddswap ddscal ddcopy ddaxpy dddot ddnorm2 ddsum ddidmax ddrot ddrotg ddrotm ddrotmg ddzdotc ddzdotu ddgemv ddsymv ddtrmv ddtrsv ddsyr ddsyr2 ddgbmv ddger ddsmbv ddtbmv ddtbsv ddzgerc ddzgeru ddzhbmv ddzhemv ddzher ddzher2 ddgemm ddsymm ddsyr2k ddsyrk ddtrmm ddtrsm ddzhemm ddzher2k ddzherk

11 4. QPBLAS-GPU BLAS (Basic Linear Algebra Subprograms) 線形基本演算のルーチン群 (40 個 ) double-double アルゴリズムで 4 倍精度化 CUDA4.0 で GPGPU 用に実装 QPBLAS-GPU (Quadrature Precision Basic Linear Algebra Subprograms on GPUs) 倍精度版 [ ルーチン名の接頭辞にdをつけて倍精度を表現 ] call dgemm( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LCD) GPU4 倍精度版 [ ルーチン名の接頭辞にgddをつけて4 倍精度を表現 ] call gddgemm( TRANSA, TRANSB, M, N, K, ALPHAH, ALPHAL, AH, AL, LDA, BH, BL, LDB, BETAH, BETAL, CH, CL, LCD) (*H : 4 倍精度の上位データ *L : 4 倍精度の下位データ )

12 4.1 QPBLAS-GPU の性能評価 DDDOT ( 内積 ) DDGEMV( 行列ベクトル積 ) DDGEMM( 行列行列積 ) の性能評価 計算機環境 Intel/ Linux Processor : Intel Xeon W3565 (3.2GHz) GPU : Tesla C2075(448core, 1.15GHz) OS : RedHat Fortran Compiler : gfortran C Compiler : gcc GPGPU 開発環境 : CUDA4.0 計算時間測定は純粋な GPU の計算時間ではなく ホストメモリーデバイスメモリ間の転送時間等を含んだもの

13 4.1 GDDDOT の性能評価 [α x T y] 1.0E E-01 CPU GPU 計算時間 (sec) 1.0E E E E E E E E E E+07 データサイズ 3 GPU/CPU 速度比最大 5 倍程度

14 4.1 GDDGEMV の性能評価 [y αax + βy] 1.0E E+00 CPU GPU 1.0E-01 計算時間 (sec) 1.0E E E E E E E E E+04 データサイズ 3 GPU/CPU 速度比最大 10 倍程度 最大演算速度 0.16GFlops( メモリ間の転送時間を含む )

15 4.1 GDDGEMM の性能評価 [C αab + βc] 1.0E E+02 CPU GPU 1.0E+01 計算時間 (sec) 1.0E E E E E E E E E E E E+04 データサイズ 3 GPU/CPU 速度比最大 500 倍程度最大演算速度 85.9GFlops( メモリ間の転送時間を含む )

16 4.2 QPBLAS-GPU の公開 HP QPBLAS- GPU の公開 HP qpblas_gpu.html ライセンスオープンソース (2 条項 BSD ライセンス ) [subrou^nes] Level 1 Level 2 Level 3 gddswap gddscal gddcopy gddaxpy gdddot gddnorm2 gddsum gddidmax gddrot gddrotg gddrotm gddrotmg gddzdotc gddzdotu gddgemv gddsymv gddtrmv gddtrsv gddsyr gddsyr2 gddgbmv gddger gddsmbv gddtbmv gddtbsv gddzgerc gddzgeru gddzhbmv gddzhemv gddzher gddzher2 gddgemm gddsymm gddsyr2k gddsyrk gddtrmm gddtrsm gddzhemm gddzher2k gddzherk

17 5 公開ソフトウェア 公開用ソフトウェア一覧 HP software.html 1. 京 コンピュータ用固有値計算ライブラリ : EigenK 2. 4 倍精度 Basic Linear Algebra Subprograms: QPBLAS 3. 4 倍精度 Basic Linear Algebra Subprograms on GPU: QPBLAS- GPU 今後 4 倍精度ソフトウェアを中心に拡充を予定

18 6. Summary double-double アルゴリズムを用いて 4 倍精度化 BLAS (QPBLAS) の作成と公開 1 主要 40 routine 2 倍精度版 gemm との速度比は約 10 倍 GPU 用 4 倍精度化 BLAS (QPBLAS-GPU) の作成と公開 1 主要 40 routine 2 CUDA4.0 3 CPU 版 gemm との速度比は最大 500 倍高速化 8

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

倍々精度RgemmのnVidia C2050上への実装と応用

倍々精度RgemmのnVidia C2050上への実装と応用 .. [email protected] http://accc.riken.jp/maho/,,, 2011/2/16 1 - : GPU : SDPA-DD 10 1 - Rgemm : 4 (32 ) nvidia C2050, GPU CPU 150, 24GFlops 25 20 GFLOPS 15 10 QuadAdd Cray, QuadMul Sloppy Kernel QuadAdd Cray,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 多倍長精度演算の性能評価 日時 年 月 日 :3-: 場所工学院大学新宿校舎 8 階第 4 会議室 高エネルギー加速器研究機構 濱口信行 [email protected] // 第 回多倍長精度計算フォーラム . はじめに 計算センター => ユーザプログラムの実行効率は何 % です よく出ています or 改善してください 実行性能 = 演算量 / 実行時間実行効率 = 実行性能 / 理論性能 ユーザ実行時間

More information

Microsoft Word - qpeigen_manual_jp-1.0.doc

Microsoft Word - qpeigen_manual_jp-1.0.doc 4 倍精度固有値計算ライブラリ QPEigen Ver.1.0 ユーザーズマニュアル 2015 年 2 月独立行政法人日本原子力研究開発機構 目次 1 概説... 3 2 行列対角化について... 2 3 4 倍精度化アルゴリズムについて... 2 4 参考文献... 3 5 ディレクトリ構成... 3 6 必要なソフトウェア... 3 7 インストール方法... 4 8 検証用 性能評価用プログラム...

More information

修士論文

修士論文 AVX を用いた倍々精度疎行列ベクトル積の高速化 菱沼利彰 1 藤井昭宏 1 田中輝雄 1 長谷川秀彦 2 1 工学院大学 2 筑波大学 1 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算 - 4. 実験 - 倍々精度疎行列ベクトル積 - 5. まとめ 多倍長精度計算フォーラム 2 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算

More information

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G 211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double

More information

Microsoft PowerPoint - sales2.ppt

Microsoft PowerPoint - sales2.ppt 最適化とは何? CPU アーキテクチャに沿った形で最適な性能を抽出できるようにする技法 ( 性能向上技法 ) コンパイラによるプログラム最適化 コンパイラメーカの技量 経験量に依存 最適化ツールによるプログラム最適化 KAP (Kuck & Associates, Inc. ) 人によるプログラム最適化 アーキテクチャのボトルネックを知ること 3 使用コンパイラによる性能の違い MFLOPS 90

More information

高性能計算研究室の紹介 High Performance Computing Lab.

高性能計算研究室の紹介 High Performance Computing Lab. 高性能計算研究室 (HPC Lab) の紹介 High Performance Computing Lab. 静岡理工科大学総合情報学部コンピュータシステム学科 ( 兼 Web デザイン特別プログラム ) 幸谷智紀 543 研究室 幸谷研究室 @ 静岡 検索 概要 1. 幸谷智紀 個人の研究テーマ 2. 3 年生ゼミ ( 情報セミナー II) 3. 卒研テーマ 4. 過去の卒研 5. 今後について

More information

高性能計算研究室の紹介 High Performance Computing Lab.

高性能計算研究室の紹介 High Performance Computing Lab. 高性能計算研究室 (HPC Lab) の紹介 High Performance Computing Lab. 静岡理工科大学総合情報学部コンピュータシステム学科 ( 兼 Web デザイン特別プログラム ) 幸谷智紀 http://na-inet.jp/ 概要 1. 幸谷智紀 個人の研究テーマ 2. 3 年生ゼミ ( 情報セミナー II) 3. 卒研テーマ 4. Webデザイン特別プログラム 5. 今後について

More information

<4D F736F F F696E74202D2091E63489F15F436F6D C982E682E992B48D8291AC92B489B F090CD2888F38DFC E B8CDD8

<4D F736F F F696E74202D2091E63489F15F436F6D C982E682E992B48D8291AC92B489B F090CD2888F38DFC E B8CDD8 Web キャンパス資料 超音波シミュレーションの基礎 ~ 第 4 回 ComWAVEによる超高速超音波解析 ~ 科学システム開発部 Copyright (c)2006 ITOCHU Techno-Solutions Corporation 本日の説明内容 ComWAVEの概要および特徴 GPGPUとは GPGPUによる解析事例 CAE POWER 超音波研究会開催 (10 月 3 日 ) のご紹介

More information

理研スーパーコンピュータ・システム

理研スーパーコンピュータ・システム 線形代数演算ライブラリ BLAS と LAPACK の基礎と実践 2 理化学研究所情報基盤センター 2013/5/30 13:00- 大阪大学基礎工学部 中田真秀 この授業の目的 対象者 - 研究用プログラムを高速化したい人 - LAPACK についてよく知らない人 この講習会の目的 - コンピュータの簡単な仕組みについて - 今後 どうやってプログラムを高速化するか - BLAS, LAPACK

More information

CCS HPCサマーセミナー 並列数値計算アルゴリズム

CCS HPCサマーセミナー 並列数値計算アルゴリズム 大規模系での高速フーリエ変換 2 高橋大介 [email protected] 筑波大学計算科学研究センター 2016/6/2 計算科学技術特論 B 1 講義内容 並列三次元 FFT における自動チューニング 二次元分割を用いた並列三次元 FFT アルゴリズム GPU クラスタにおける並列三次元 FFT 2016/6/2 計算科学技術特論 B 2 並列三次元 FFT における 自動チューニング

More information

ペタスケール計算環境に向けたFFTライブラリ

ペタスケール計算環境に向けたFFTライブラリ A01 高橋班 大規模並列環境における 数値計算アルゴリズム 研究代表者 : 高橋大介 筑波大学大学院システム情報工学研究科 研究組織 研究代表者 高橋大介 ( 筑波大学 ): 研究統括および高速アルゴリズム 研究分担者 今村俊幸 ( 電気通信大学 ): 性能チューニング 多田野寛人 ( 筑波大学 ): 大規模線形計算 連携研究者 佐藤三久 ( 筑波大学 ): 並列システムの性能評価 朴泰祐 ( 筑波大学

More information

る連続なアクセスができるなどの利点がある. 倍々精度浮動小数は, 符号部 1 bit, 指数部 11 bit, 仮数部 14 (52 2) bit からなる. これは符号部 1bit, 指数部 15 bit, 仮数部 112 bit からなる IEEE754 準拠の 4 倍精度と比 べて指数部が 4

る連続なアクセスができるなどの利点がある. 倍々精度浮動小数は, 符号部 1 bit, 指数部 11 bit, 仮数部 14 (52 2) bit からなる. これは符号部 1bit, 指数部 15 bit, 仮数部 112 bit からなる IEEE754 準拠の 4 倍精度と比 べて指数部が 4 AVX2 を用いた倍々精度反復解法の高速化 1 菱沼利彰 1 藤井昭宏 1 田中輝雄 2 長谷川秀彦 大規模数値シミュレーションの核である Krylov 部分空間法は, 丸め誤差により収束に影響を受ける. 高精度演算を用いれば収束を改善できるが, 計算時間が多くかかる. 我々はこれまで,SIMD 拡張命令 AVX を用いて, 高精度演算の 1 つである倍々精度演算を高速化してきた. その成果として,AVX2

More information

GPGPU によるアクセラレーション環境について

GPGPU によるアクセラレーション環境について GPGPU によるアクセラレーション環境について 長屋貴量 自然科学研究機構分子科学研究所技術課計算科学技術班 概要 GPGPU とは 単純で画一的なデータを一度に大量に処理することに特化したグラフィックカードの演算資源を 画像処理以外の汎用的な目的に応用する技術の一つである 近年 その演算能力は CPU で通常言われるムーアの法則に則った場合とは異なり 飛躍的に向上しており その演算性能に魅力を感じた各分野での応用が広がってきている

More information

チューニング講習会 初級編

チューニング講習会 初級編 GPU のしくみ RICC での使い方 およびベンチマーク 理化学研究所情報基盤センター 2013/6/27 17:00 17:30 中田真秀 RICC の GPU が高速に! ( 旧 C1060 比約 6.6 倍高速 ) RICCのGPUがC2075になりました! C1060 比 6.6 倍高速 倍精度 515GFlops UPCに100 枚導入 : 合計 51.5TFlops うまく行くと5 倍程度高速化

More information

Agenda GRAPE-MPの紹介と性能評価 GRAPE-MPの概要 OpenCLによる四倍精度演算 (preliminary) 4倍精度演算用SIM 加速ボード 6 processor elem with 128 bit logic Peak: 1.2Gflops

Agenda GRAPE-MPの紹介と性能評価 GRAPE-MPの概要 OpenCLによる四倍精度演算 (preliminary) 4倍精度演算用SIM 加速ボード 6 processor elem with 128 bit logic Peak: 1.2Gflops Agenda GRAPE-MPの紹介と性能評価 GRAPE-MPの概要 OpenCLによる四倍精度演算 (preliminary) 4倍精度演算用SIM 加速ボード 6 processor elem with 128 bit logic Peak: 1.2Gflops ボードの概要 Control processor (FPGA by Altera) GRAPE-MP chip[nextreme

More information

スライド 1

スライド 1 GPU クラスタによる格子 QCD 計算 広大理尾崎裕介 石川健一 1.1 Introduction Graphic Processing Units 1 チップに数百個の演算器 多数の演算器による並列計算 ~TFLOPS ( 単精度 ) CPU 数十 GFLOPS バンド幅 ~100GB/s コストパフォーマンス ~$400 GPU の開発環境 NVIDIA CUDA http://www.nvidia.co.jp/object/cuda_home_new_jp.html

More information

Microsoft PowerPoint SCOPE-presen

Microsoft PowerPoint SCOPE-presen H19-21 SCOPE 若手 ICT 研究者育成型研究開発 楕円曲線暗号を用いた 匿名認証基盤の研究開発 岡山大学大学院自然科学研究科 中西 野上 透 保之 1 研究の背景 ユビキタス社会では ユーザ認証を通じ ユーザ認証を通じユーザの様々な履歴がサーバに蓄積 ID:Alice Pass: ***** ユーザ ID:Alice インターネットサーバ 様々な機器からの利用 様々な場所からの利用 Pass:

More information

EnSightのご紹介

EnSightのご紹介 オープン CAE シンポジウム 2014 汎用ポストプロセッサー EnSight の大規模データ対応 CEI ソフトウェア株式会社代表取締役吉川慈人 http://www.ceisoftware.co.jp/ 内容 大規模データで時間のかかる処理 クライアント サーバー機能 マルチスレッドによる並列処理 サーバーの分散処理 クライアントの分散処理 ( 分散レンダリング ) EnSightのOpenFOAMインターフェース

More information

iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU

More information

CLEFIA_ISEC発表

CLEFIA_ISEC発表 128 ビットブロック暗号 CLEFIA 白井太三 渋谷香士 秋下徹 盛合志帆 岩田哲 ソニー株式会社 名古屋大学 目次 背景 アルゴリズム仕様 設計方針 安全性評価 実装性能評価 まとめ 2 背景 AES プロジェクト開始 (1997~) から 10 年 AES プロジェクト 攻撃法の進化 代数攻撃 関連鍵攻撃 新しい攻撃法への対策 暗号設計法の進化 IC カード, RFID などのアプリケーション拡大

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

LAPACK/BLAS入門

LAPACK/BLAS入門 LAPACK/BLAS 入門 静岡理工科大学情報学部コンピュータシステム学科幸谷智紀 [email protected] 本日のメニュー. LAPACK/BLAS 入門 について 2. LAPACK/BLAS とは? 2. LAPACK/BLAS の概略 2.2 LAPACKE/CBLAS 2.3 ベクトル, 行列のデータ型 2.4 LAPACK/BLAS を使うメリット デメリット

More information

最新の並列計算事情とCAE

最新の並列計算事情とCAE 1 大島聡史 ( 東京大学情報基盤センター助教 / 並列計算分科会主査 ) 最新の並列計算事情と CAE アウトライン 最新の並列計算機事情と CAE 世界一の性能を達成した 京 について マルチコア メニーコア GPU クラスタ 最新の並列計算事情と CAE MPI OpenMP CUDA OpenCL etc. 京 については 仕分けやら予算やら計画やらの面で問題視する意見もあるかと思いますが

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

Microsoft Word ●IntelクアッドコアCPUでのベンチマーク_吉岡_ _更新__ doc

Microsoft Word ●IntelクアッドコアCPUでのベンチマーク_吉岡_ _更新__ doc 2.3. アプリ性能 2.3.1. Intel クアッドコア CPU でのベンチマーク 東京海洋大学吉岡諭 1. はじめにこの数年でマルチコア CPU の普及が進んできた x86 系の CPU でも Intel と AD がデュアルコア クアッドコアの CPU を次々と市場に送り出していて それらが PC クラスタの CPU として採用され HPC に活用されている ここでは Intel クアッドコア

More information

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments 計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];

More information

CELSIUSカタログ(2012年7月版)

CELSIUSカタログ(2012年7月版) CELSIUS PC "MADE IN JAPAN" 2012.7 W520 ハイエンドの過酷な要求に応えるパワフルなデュアルと高信頼を搭載 RAID構成 選択可能 富士通がお勧めする Windows 7. ミニタワーエントリーモデル より速く より強力に 最新の技術をフル投入 スピードとパワー 安定性を提供 RAID構成 選択可能 Windows 7 Professional 32bit版 正規版

More information

Microsoft Word - nvsi_050110jp_netvault_vtl_on_dothill_sannetII.doc

Microsoft Word - nvsi_050110jp_netvault_vtl_on_dothill_sannetII.doc Article ID: NVSI-050110JP Created: 2005/10/19 Revised: - NetVault 仮想テープ ライブラリのパフォーマンス検証 : dothill SANnetⅡSATA 編 1. 検証の目的 ドットヒルシステムズ株式会社の SANnetll SATA は 安価な SATA ドライブを使用した大容量ストレージで ディスクへのバックアップを行う際の対象デバイスとして最適と言えます

More information

CELSIUSカタログ(2012年5月版)

CELSIUSカタログ(2012年5月版) CELSIUS PC "MADE IN JAPAN" 2012.5 New W520 ハイエンドの過酷な要求に応えるパワフルなデュアルと高信頼を搭載 トを搭載 RAID構成 選択可能 New グラフィックス/GPUカード 500GB 1TB 500GB 2 RAID1 Quadro 5000 Quadro 4000 Quadro 2000 Quadro 600 4 Quadro 4000 TeslaTM

More information

NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ

NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ K20 GPU2 個に対するスピードアップ NVIDIA は Fermi アーキテクチャ GPU の発表により パフォーマンス エネルギー効率の両面で飛躍的な性能向上を実現し ハイパフォーマンスコンピューティング (HPC) の世界に変革をもたらしました また 実際に GPU

More information

-1-1 1 1 1 1 12 31 2 2 3 4

-1-1 1 1 1 1 12 31 2 2 3 4 2007 -1-1 1 1 1 1 12 31 2 2 3 4 -2-5 6 CPU 3 Windows98 1 -3-2. 3. -4-4 2 5 1 1 1 -5- 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000-6- -7-1 Windows 2 -8-1 2 3 4 - - 100,000 200,000 500,000

More information

図 2 AVX の SIMD レジスタの構造 Figure 2 Architecture of AVX SIMD register 図 1 倍々精度のビット数 Figure 1 Bit pattern of Double-Double precision number る Double-Double

図 2 AVX の SIMD レジスタの構造 Figure 2 Architecture of AVX SIMD register 図 1 倍々精度のビット数 Figure 1 Bit pattern of Double-Double precision number る Double-Double AVX を用いた倍々精度疎行列ベクトル積の高速化 1 菱沼利彰 1 藤井昭宏 1 田中輝雄 2 長谷川秀彦 計算性能の向上に伴い, 高精度による計算が多くの場面で可能となっている.4 倍精度を効率良く実現する手法として,2 つの倍精度変数で 1 つの 4 倍精度変数を表現する倍々精度演算がある. 本研究では, 疎行列とベクトルの演算に使われる基本演算を AVX 命令を用いて高速化し, 性能を決定するパラメタについて分析を行うことにより,

More information

Microsoft PowerPoint PCクラスタワークショップin京都.ppt

Microsoft PowerPoint PCクラスタワークショップin京都.ppt PC クラスタシステムへの富士通の取り組み 富士通株式会社株式会社富士通研究所久門耕一 29 年度に富士通が提供する ( した ) 大規模クラスタ 今年度はCPUとしてメモリバンド幅がNehalem, QDR- IB( 片方向 4GB/s) などPCクラスタにとって期待できる多くのコモディティコンポーネントが出現 これら魅力ある素材を使ったシステムとして 2つのシステムをご紹介 理化学研究所様 RICC(Riken

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation 熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻

More information

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD

More information

インテル(R) Visual Fortran Composer XE

インテル(R) Visual Fortran Composer XE Visual Fortran Composer XE 1. 2. 3. 4. 5. Visual Studio 6. Visual Studio 7. 8. Compaq Visual Fortran 9. Visual Studio 10. 2 https://registrationcenter.intel.com/regcenter/ w_fcompxe_all_jp_2013_sp1.1.139.exe

More information

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1 .. BLAS LAPACK 1, 2013/05/23 CMSI A 1 / 43 BLAS LAPACK (I) BLAS, LAPACK BLAS : - LAPACK : 2 / 43 : 3 / 43 (wikipedia) V : f : V u, v u + v u + v V α K u V αu V V x, y f (x + y) = f (x) + f (y) V x K α

More information

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla

More information

$ cmake --version $ make --version $ gcc --version 環境が無いあるいはバージョンが古い場合は yum などを用いて導入 最新化を行う 4. 圧縮ファイルを解凍する $ tar xzvf gromacs tar.gz 5. cmake を用

$ cmake --version $ make --version $ gcc --version 環境が無いあるいはバージョンが古い場合は yum などを用いて導入 最新化を行う 4. 圧縮ファイルを解凍する $ tar xzvf gromacs tar.gz 5. cmake を用 本マニュアルの目的 Linux サーバー版 Gromacs インストールマニュアル 2015/10/28 本マニュアルでは 単独ユーザが独占的に Linux サーバー (CentOS 6.6) を使用して Gromacs ジョブを実行するための環境構築方法と Winmostar のリモートジョブ機能による計算手順を示しています つまり複数ユーザが共同使用する計算サーバー等は対象外です そのため計算環境は全てユーザのホームディレクトリ配下で行う構築することを想定しています

More information

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1

線形代数演算ライブラリBLASとLAPACKの 基礎と実践1 1 / 50 BLAS LAPACK 1, 2015/05/21 CMSI A 2 / 50 BLAS LAPACK (I) BLAS, LAPACK BLAS : - LAPACK : 3 / 50 ( ) 1000 ( ; 1 2 ) :... 3 / 50 ( ) 1000 ( ; 1 2 ) :... 3 / 50 ( ) 1000 ( ; 1 2 ) :... 3 / 50 ( ) 1000

More information

GPUを用いたN体計算

GPUを用いたN体計算 単精度 190Tflops GPU クラスタ ( 長崎大 ) の紹介 長崎大学工学部超高速メニーコアコンピューティングセンターテニュアトラック助教濱田剛 1 概要 GPU (Graphics Processing Unit) について簡単に説明します. GPU クラスタが得意とする応用問題を議論し 長崎大学での GPU クラスタによる 取組方針 N 体計算の高速化に関する研究内容 を紹介します. まとめ

More information

Microsoft PowerPoint - OS07.pptx

Microsoft PowerPoint - OS07.pptx この資料は 情報工学レクチャーシリーズ松尾啓志著 ( 森北出版株式会社 ) を用いて授業を行うために 名古屋工業大学松尾啓志 津邑公暁が作成しました 主記憶管理 主記憶管理基礎 パワーポイント 27 で最終版として保存しているため 変更はできませんが 授業でお使いなる場合は松尾 ([email protected]) まで連絡いただければ 編集可能なバージョンをお渡しする事も可能です 復習 OS

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

HP High Performance Computing(HPC)

HP High Performance Computing(HPC) ACCELERATE HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPC HP HPCHP HP HPC 1 HPC HP 2 HPC HPC HP ITIDC HP HPC 1HPC HPC No.1 HPC TOP500 2010 11 HP 159 32% HP HPCHP 2010 Q1-Q4

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション みんなの ベクトル計算 たけおか @takeoka PC クラスタ コンソーシアム理事でもある 2011/FEB/20 ベクトル計算が新しい と 2008 年末に言いました Intelに入ってる! (2008 年から見た 近未来? ) GPU 計算が新しい (2008 年当時 ) Intel AVX (Advanced Vector Extension) SIMD 命令を進めて ベクトル機構をつける

More information

次 CAE を取り巻く環境と展望 企業がシミュレーションに抱える痛み :3 つの例 クラウド CAE サービス Cistr Cistr のシステム概要 最新版 Cistr でできること Cistr を利 してみる 2

次 CAE を取り巻く環境と展望 企業がシミュレーションに抱える痛み :3 つの例 クラウド CAE サービス Cistr Cistr のシステム概要 最新版 Cistr でできること Cistr を利 してみる 2 クラウド CAE サービス 東京 学 学院新領域創成科学研究科 森 直樹, 井原遊, 野達 1 次 CAE を取り巻く環境と展望 企業がシミュレーションに抱える痛み :3 つの例 クラウド CAE サービス Cistr Cistr のシステム概要 最新版 Cistr でできること Cistr を利 してみる 2 CAE を取り巻く環境と展望 3 国内市場規模は約 3400 億円程度 2015 年度の国内

More information

計算機アーキテクチャ

計算機アーキテクチャ 計算機アーキテクチャ 第 11 回命令実行の流れ 2014 年 6 月 20 日 電気情報工学科 田島孝治 1 授業スケジュール ( 前期 ) 2 回日付タイトル 1 4/7 コンピュータ技術の歴史と コンピュータアーキテクチャ 2 4/14 ノイマン型コンピュータ 3 4/21 コンピュータのハードウェア 4 4/28 数と文字の表現 5 5/12 固定小数点数と浮動小数点表現 6 5/19 計算アーキテクチャ

More information

<4D F736F F F696E74202D A A814590DA904796E291E882C991CE82B782E946726F6E CC95C097F190FC8C60835C838B836F815B82C982C282A282C42E >

<4D F736F F F696E74202D A A814590DA904796E291E882C991CE82B782E946726F6E CC95C097F190FC8C60835C838B836F815B82C982C282A282C42E > 東京大学本郷キャンパス 工学部8号館 84講義室 (地下1階) アセンブリ 接触問題に対する FrontISTRの並列線形ソルバー について 2016年11月28日 第32回FrontISTR研究会 FrontISTRによる接触解析における機能拡張と計算事例 本研究開発は, 文部科学省ポスト 京 重点課題 8 近未来型ものづくりを先導する革新的設計 製造プロセスの開発 の一環として実施したものです

More information

製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析

製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析 ホワイトペーパー Excel と MATLAB の連携がデータ解析の課題を解決 製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析に使用することはできず

More information

GPGPUクラスタの性能評価

GPGPUクラスタの性能評価 2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野

More information