こんにちは由美子です
|
|
|
- みちしげ さかわ
- 9 years ago
- Views:
Transcription
1 1
2 2
3 λ 3
4 λ λ. correlate father mother first second (obs=20) father mother first second father mother first second regress father mother Source SS df MS Number of obs = F( 1, 18) = 0.96 Model Prob > F = Residual R-squared =
5 Adj R-squared = Total Root MSE = father Coef. Std. Err. t P> t [95% Conf. Interval] mother _cons regress father first Source SS df MS Number of obs = F( 1, 18) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = father Coef. Std. Err. t P> t [95% Conf. Interval] first _cons regress father second Source SS df MS Number of obs = F( 1, 18) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = father Coef. Std. Err. t P> t [95% Conf. Interval] second _cons regress mother first Source SS df MS Number of obs = F( 1, 18) = 9.32 Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = mother Coef. Std. Err. t P> t [95% Conf. Interval] first _cons regress mother second Source SS df MS Number of obs = F( 1, 18) = 5.25 Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = mother Coef. Std. Err. t P> t [95% Conf. Interval] second _cons
6 . regress first second Source SS df MS Number of obs = F( 1, 18) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = first Coef. Std. Err. t P> t [95% Conf. Interval] second _cons
7 . sort twin. by twin: sum sbp -> twin= 0 sbp > twin= 1 sbp sort id. by id: sum sbp -> id= 1 7
8 sbp > id= 2 sbp > id= 3 sbp > id= 4 sbp > id= 5 sbp > id= 6 sbp > id= 7 sbp > id= 8 sbp > id= 9 sbp > id= 10 sbp MSAMZ = sum of squares among monozygous twin, MZ/(nMZ-1) = /4 = MSWMZ = sum of squares within monozygous twin, MZ/nMZ = 44/5 = 8.8 MSADZ = sum of squares among dizygous twin, DZ/(nDZ-1) = 1312/4 = MSWDZ = sum of squares within dizygous twin, DZ/nDZ = 522/5 =
9 rmz = (MSAMZ-MSWMZ) / (MSAMZ+MSWMZ)=( ) / ( ) = 0.95 rdz = (MSADZ-MSWDZ) / (MSADZ+MSWDZ)=( ) / ( ) = h2 = w)rmz rdz) = 2 ( ) = χ 9
10 10
11 (sbp) sib pair linkage study Angiotensin I converting enzyme (ACEI) microsatellite marker 4 A1 = 0.20, A2 = 0.25, A3 = 0.10, A4 = 0.05, A5 = 0.27, A6 = ID 12 (sbp) IBD allele Haseman-Elston method 11
12 identical by descent (IBD) AB CD AB AC AC AC AB AC IBD = 2 IBD = 0 2 A B C A C A A IBD 0 identical by state (IBS) 1 IBS IBD=<IBS IBD I II III IV V AA AA AA CC AA AC AA BC AC AC IBD = 2 or 1 or 0 =0 =1 or 0 =0 =2 or 1 or 0 IBS = 2 =0 =1 =0 =2 VI VII AC AB AB CD IBD = 0 or 1 = 0 IBS = 1 =0 IBD 0 IBD 1 IBD 2 I 4 P A 3 P A 2 P A II 2P 2 2 A P C 0 0 III 4P 3 A P C 2P 2 A P C 0 IV 4P 3 A P C P B 0 0 V 4P 2 2 A P C P A P C (P A + P C ) 2P A P C VI 8P 3 A P B P C 2P A P B P C 0 VII P A P B P C P D 0 0 π = [f2*(ibd 2 ) + f1*(ibd 1 /2)] / [f2*(ibd 2 ) + f1*(ibd 1 /2) + f0*(ibd 0 )] fi:i IBD ; f2= 1/4, f1 = 1/2, f0 = 1/4 12
13 ID Y 2 π (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (y 1j y 2j ) 2 = α + βπ H 0 : β=0 versus H A : β,< 0. regress Y X Source SS df MS Number of obs = F( 1, 10) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = Y Coef. Std. Err. t P> t [95% Conf. Interval] X _cons E(Y) = π, p=
卒業論文
Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
入門ガイド
ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s
BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest
262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...
これわかWord2010_第1部_100710.indd
i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv
パワポカバー入稿用.indd
i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84
これでわかるAccess2010
i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77
1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30
1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7
平成18年版 男女共同参画白書
i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45
178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21
I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (
44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)
(1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46
i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
エクセルカバー入稿用.indd
i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.
01_.g.r..
I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2
ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7
AccessflÌfl—−ÇŠš1
ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS
活用ガイド (ソフトウェア編)
(Windows 95 ) ii iii iv NEC Corporation 1999 v P A R T 1 vi P A R T 2 vii P A R T 3 P A R T 4 viii P A R T 5 ix x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 6 5 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 4
困ったときのQ&A
ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1
- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...
取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -
活用ガイド (ソフトウェア編)
(Windows 98 ) ii iii iv v NEC Corporation 1999 vi P A R T 1 P A R T 2 vii P A R T 3 viii P A R T 4 ix P A R T 5 x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 5 6 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 10
レーザビームプリンタ Satera ネットワークガイド/本編
JPN ii iii iv v 7 vi vii viii 1 CHAPTER 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 2 CHAPTER 2-1 2-2 1 2 3 4 2-3 5 6 2-4 7 8 2-5 9 2-6 10 2-7 ERR LNK 100 NB-C1 2-8 11 12 2-9 2-10 13 2-11 14 15 2-12 16 17 2-13 18
卒論 提出用ファイル.doc
11 13 1LT99097W (i) (ii) 0. 0....1 1....3 1.1....3 1.2....4 2....7 2.1....7 2.2....8 2.2.1....8 2.2.2....9 2.2.3.... 10 2.3.... 12 3.... 15 Appendix... 17 1.... 17 2.... 19 3.... 20... 22 (1) a. b. c.
<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
例 題 で 学 ぶ Excel 統 計 入 門 第 2 版 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/084302 このサンプルページの 内 容 は, 第 2 版 発 行 当 時 のものです. i 2 9 2 Web 2 Excel Excel Excel 11 Excel
CRS4
I... 1 II... 1 A... 1 B... 1 C... 1 D... 2 E... 3 III... 3 A... 3 B... 4 C... 5 IV... 8 A... 8 B... 8 C... 9 D... 10 V... 11 A... 11 B... 11 C... 12 VI... 12 A... 12 B... 12 C... 12 VII... 13 ii I II A
パソコン機能ガイド
PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1
パソコン機能ガイド
PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22
...J......1803.QX
5 7 9 11 13 15 17 19 21 23 45-1111 48-2314 1 I II 100,000 80,000 60,000 40,000 20,000 0 272,437 80,348 82,207 81,393 82,293 83,696 84,028 82,232 248,983 80,411 4,615 4,757 248,434 248,688 76,708 6,299
α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +
Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P
1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3
3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
1
10 200 15 20 50 (1) (2) 45 A4 JICA 15 WS 1 [] a. b. 10 A 30 15 15 NGO PC 5 15 15 15 15 NGO 1948 1970 10 NGO 90 AB 40 40 WS 1 NGO 40 WS Q 43 63 73 15 9 8 5 5 4 63 17 9 8 6 6 4 2000 14 15 100 2000 1
長崎県地域防災計画
i ii iii iv v vi vii viii ix - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - 玢 - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - -
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
ONLINE_MANUAL
JPN ii iii iv v 6 vi vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 4 5 1-3 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5
ONLINE_MANUAL
JPN ii iii iv v vi 6 vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 1-3 4 5 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5
™…
i 1 1 1 2 3 5 5 6 7 9 10 11 13 13 14 15 15 16 17 18 20 20 20 21 22 ii CONTENTS 23 24 26 27 2 31 31 32 32 33 34 37 37 38 39 39 40 42 42 43 44 45 48 50 51 51 iii 54 57 58 60 60 62 64 64 67 69 70 iv 70 71
