1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
|
|
|
- きみつぐ うばら
- 6 years ago
- Views:
Transcription
1 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
2 2 3 2 Conservative Depress SEM. 1. x SEM. Depress. x11 x12 x13,, x11-x13. 2., Conservative.,. x1 x3-x7 x9.
3 , SEM /.. ( )Depress Conservative SEM / /.,. ( ) / /..
4 /., Stata,.. estat gof,stats (all) Fit statistic Value Description Likelihood ratio chi2_ms(33) model vs. saturated p > chi chi2_bs(45) baseline vs. saturated p > chi Population error RMSEA Root mean squared error of approximation 90% CI, lower bound upper bound pclose Probability RMSEA <= 0.05 Information criteria AIC Akaike s information criterion BIC Bayesian information criterion Baseline comparison CFI Comparative fit index TLI Tucker-Lewis index Size of residuals SRMR Standardized root mean squared residual CD Coefficient of determination.. Chi-square(33)= {it:p}<0.01 RMSEA=0.41 CFI=0.98 SRMA=0.03 {it:n}=1466 {it:p} p. SEM, 2 Depress Conservative.
5 SEM. 1.,. McClelland et al. (2013) path.dta 4. 7., SEM. SEM., mlmv( ).,. 1 Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 2 A substantive example of a path model.
6 sem (attention4 -> math7, ) (attention4 -> read7, ) (attention4 -> math21, ) (math7 -> math21, ) (read > 7 -> math21, ), method(mlmv) standardized Endogenous variables Observed: Exogenous variables Observed: math7 read7 math21 attention4 Fitting saturated model: ( ) Structural equation model Number of obs = 430 Estimation method = mlmv Log likelihood = OIM Standardized Coef. Std. Err. z P> z [95% Conf. Interval] Structural math7 <- attention _cons read7 <- attention _cons math21 <- math read attention _cons var(e.math7) var(e.read7) var(e.math21) LR test of model vs. saturated: chi2(1) = 27.56, Prob > chi2 =
7 7 3 2 math7 attention4 ( ). read7 ( ). math21 math7 read7, math7 math21 attention4, math7 read7... estat eqgof Equation-level goodness of fit Variance depvars fitted predicted residual R-squared mc mc2 observed math read math overall mc = correlation between depvar and its prediction mc2 = mc^2 is the Bentler-Raykov squared multiple correlation coefficient math7 read7, 2%., math21 19%. R 2 = mc2 (Bentler-Raykov R 2 ).. estat gof,stats(all)
8 Fit statistic Value Description Likelihood ratio chi2_ms(1) model vs. saturated p > chi chi2_bs(6) baseline vs. saturated p > chi Population error RMSEA Root mean squared error of approximation 90% CI, lower bound upper bound pclose Probability RMSEA <= 0.05 Information criteria AIC Akaike s information criterion BIC Bayesian information criterion Baseline comparison CFI Comparative fit index TLI Tucker-Lewis index Size of residuals CD Coefficient of determination Note: SRMR is not reported because of missing values. χ 2 (1) = 27.56, p < 0.001,. RMSEA 0.25, 0.05,. CFI 0.9,.. estat mindices
9 9 3 2 Modification indices Standard MI df P>MI EPC EPC Structural math7 read7 read math math math cov(e.math7,e.read7) EPC = expected parameter change,, math21 read7 math7,., read7 math7.,.,. 3.3 math7 read7. 1. perfect fit,,,.
10 , mlmv. Structural equation model Number of obs = 430 Estimation method = mlmv Log likelihood = OIM Standardized Coef. Std. Err. z P> z [95% Conf. Interval] Structural math7 <- attention _cons read7 <- attention _cons math21 <- math read attention _cons var(e.math7) var(e.read7) var(e.math21) cov(e.math7,e.read7) LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 =... estat eqgof Equation-level goodness of fit
11 Variance depvars fitted predicted residual R-squared mc mc2 observed math read math overall mc = correlation between depvar and its prediction mc2 = mc^2 is the Bentler-Raykov squared multiple correlation coefficient math7 read7 math , estat gof,stats(all) estats mindices 3.4 math21 3 attention4 math7 read7 2. estat teffects,standardize
12 Direct effects OIM Coef. Std. Err. z P> z Std. Coef. Structural math7 <- attention read7 <- attention math21 <- math read attention Indirect effects OIM Coef. Std. Err. z P> z Std. Coef. Structural math7 <- attention4 0 (no path) 0 read7 <- attention4 0 (no path) 0 math21 <- math7 0 (no path) 0 read7 0 (no path) 0 attention Total effects OIM Coef. Std. Err. z P> z Std. Coef. Structural math7 <- attention read7 <- attention math21 <- math read attention Std. Coef. 1,, 2, attention4 math7 read
13 = ,. Math7 attention4 math Read7 attention4 read Math21 attention4 math math7 math read7 math p < 0.05, p < 0.01, p < , ( ),
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
卒業論文
Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k
2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
Microsoft Word - 計量研修テキスト_第5版).doc
Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included
.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr
3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized
kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i
kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)
Use R
Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,
こんにちは由美子です
Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
1 15 R Part : website:
1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................
Microsoft Word - 計量研修テキスト_第5版).doc
Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05
σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n
R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)
こんにちは由美子です
1 2 λ 3 λ λ. correlate father mother first second (obs=20) father mother first second ---------+------------------------------------ father 1.0000 mother 0.2254 1.0000 first 0.7919 0.5841 1.0000 second
DAA09
> summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s
BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest
講義のーと : データ解析のための統計モデリング. 第5回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :
kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t 1 + + Φ p y t p + ε t, ε t ~ W.N(Ω), を推定することを考える (
Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理
R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)
TS002
TS002 Stata 12 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 26 mwp-005 svar VAR 33 mwp-007 vec intro VEC 51 mwp-008 vec VEC 80 mwp-063 VAR vargranger Granger 93 mwp-062 varlmar
Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp
TS002 Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp-063 VAR postestimation vargranger Granger 86
Microsoft Word - 計量研修テキスト_第5版).doc
Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975
<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>
Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables
201711grade2.pdf
2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35
Microsoft Word - 計量研修テキスト_第5版).doc
Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or
kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4
Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21
Stata User Group Meeting in Kyoto / 2017 9 16 ( / ) Stata User Group Meeting in Kyoto 2017 9 16 1 / 21 Rosenbaum and Rubin (1983) logit/probit, ATE = E [Y 1 Y 0 ] ( / ) Stata User Group Meeting in Kyoto
X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I
(missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely
lavaan Yves Rosseel Department of Data Analysis Ghent University (Belgium) lavaan lavaan cfa sem growth summary coef fitted inspe
lavaan Yves Rosseel Department of Data Analysis Ghent University (Belgium) 2013 7 21 2013 11 12 lavaan lavaan cfa sem growth summary coef fitted inspect 2 lavaan * 1 1 2 2 lavaan 3 3 3 4 1: CFA 5 5 2 10
第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞>
1/21 1 2 3 1 2 3 4 5 4 5 6 2/21 2 3 2 4 5 6 3/21 38 38 4 2007 10 471 10 10 () () () OKI () () () () () 1989 2008 4 13 10 10 1 2 3 4 1 3 1 4/21 2 3 3 2 5/21 3 100 1.5 1/2 4 () 1991 2002 10 3 1 6/21 10 6
講義のーと : データ解析のための統計モデリング. 第3回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :
kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)
一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM
.. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!
: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99
218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.
現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」
URL: http://tsigeto.info/statg/ I () 3 2016 2 ( 7F) 1 : (1); (2) 1998 (70 20% 6 9 ) (30%) ( 2) ( 2) 2 1. (4/14) 2. SPSS (4/21) 3. (4/28) [] 4. (5/126/2) [1, 4] 5. (6/9) 6. (6/166/30) [2, 5] 7. (7/78/4)
第13回:交差項を含む回帰・弾力性の推定
13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β
Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,
Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Bunka Women's University, Shibuya-ku, Tokyo 151-8523
Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5
第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる
7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推
7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率
new_SPSS_4刷はじめから のコピー
iii 1 1 2 4 121 4 122 8 123 8 124 10 125 14 126 17 127 18 128 19 19 20 20 21 ix 129 22 22 25 26 28 29 2 31 32 35 221 35 222 38 223 39 224 42 45 231 45 232 46 233 48 234 49 235 50 236 51 52 241 52 242 55
Vol.65 No.2 大阪大学経済学 September 2015 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元大輔 谷﨑久志 要旨 JELR 1. はじめに Stata,, %.,
Title Author(s) 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元, 大輔 ; 谷﨑, 久志 Citation 大阪大学経済学. 65(2) P.39-P.55 Issue Date 2015-09 Text Version publisher URL https://doi.org/10.18910/57097 DOI 10.18910/57097
2
[email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)
3 HLM High School and Beyond HLM6 HLM6 C: Program Files HLM6S 2 C: Program MATHACH Files HLM6S Examples AppendxA school SECTOR Socio-Economic
1 2006 5 26 1 S. W. Raudenbush HLM6 student edition SAS/STAT MIXED R 2 HLM6 HLM HLM Hierarchical Linear A. S. Bryk S. W. Raudenbush Models HLM SSI *1 HLM6 student edition *2 student edition HLM6 (1) GUI
4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model
1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14
Fig. 1.1 Annual commercial landings of masu salmon in Hokkaido during 1970-2002. Fig. 1.2 Number of hatchery-reared masu salmon stocked in Hokkaido, 1980-2001. Fig. 2.2a Masu salmon landed
自由集会時系列part2web.key
spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable
Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide
PS001 Stata 11 whitepaper mwp 4 mwp-027 23 mwp-028 / 41 mwp-001 51 mwp-078 62 mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide/long 100 mwp-036 ivregress 110 mwp-082 logistic/logit
オーストラリア研究紀要 36号(P)☆/3.橋本
36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics
塗装深み感の要因解析
17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.
磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論
email: [email protected] May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear
