Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Size: px
Start display at page:

Download "Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim"

Transcription

1 TS001

2 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls DF-GLS 62 mwp-053 dfuller ADF 67 mwp-052 pperron P-P 73 mwp-054 tsset 77 mwp-002 / 83 mwp-001 StataCorp c 2011 Math c 2011 StataCorp LP Math web: [email protected]

3 mwp-083 Stata arima, arch / whitepaper mwp-003, mwp-051, whitepaper VAR/VEC mwp ARCH 7. tsset 1. (1) y 1, y 2,..., y T (stochastic process) {y t } = {..., y 1, y 0, y 1,...} (1) {y t } 3 {y t} (stationary) (weakly stationary) (covariance stationary) (i) E(y t ) t (ii) V (y t ) t (iii) Cov(y t, y t s ) t s(s > 0) c Copyright Math c Copyright StataCorp LP (used with permission) 3

4 (2) (white noise) {u t } E(u t ) = 0 (2a) V (u t ) = σ 2 (2b) Cov(u t, u s ) = 0, t s (2c) 0 (σ 2 ) 2. (1) AR(p) p (autoregressive process) *1 y t = ϕ 1 y t 1 + ϕ 2 y t ϕ p y t p + ϵ t, ϵ t WN(whitenoise) (3) (2) MA(q) q (moving average process) y t = ϵ t + θ 1 ϵ t θ q ϵ t q, ϵ t WN (4) (3) ARMA(p, q) (p, q) (autoregressive-moving average process) AR(p) MA(q) y t = ϕ 1 y t 1 + ϕ 2 y t ϕ p y t p + ϵ t + θ 1 ϵ t θ q ϵ t q, ϵ t WN (5) L ϕ(l) = (1 ϕ 1 L ϕ 2 L 2 ϕ p L p ) θ(l) = (1 + θ 1 L + θ 2 L φ q L q ) (6a) (6b) AR(p), MA(q), ARMA(p, q) AR(p) ϕ(l)y t = ϵ t (7a) MA(q) y t = θ(l)ϵ t (7b) ARMA(p, q) ϕ(l)y t = θ(l)ϵ t (7c) *1 [TS] arima p54 ϕ ρ 4

5 ARCH 7. tsset 5

6 mwp-051 arch - ARCH arch ARCH, GARCH ARCH (volatility) 1. ARCH 2. ARCH/GARCH 3. ARCH/GARCH ARMA 4. EGARCH 5. PGARCH ARCH ARCH (autoregressive conditional heteroskedasticity) [TS] arch p12 (1) y t (conditional mean equation) σt 2 (conditional variance equation) A B ARCH, GARCH [TS] arch p12-13 (2) (3) arch ARCH/GARCH Example wpi1.dta ARCH/GARCH. use * 1 (wholesale price index) 1960q1 1990q4 ln wpi ln(wpi) c Copyright Math c Copyright StataCorp LP (used with permission) *1 File Example Datasets Stata 11 manual datasets Time-Series Reference Manual [TS] arch 6

7 . list if n <= 4 n >= ( N - 3), separator(4) * 2 wpi t ln_wpi q q q q q q q q D.ln wpi ln wpi 1. twoway (line D.ln wpi t), yline(0) * 3 postestimation estat archlm [R] regress postestimation time series Engle LM (Lagrange Multiplier test) ARCH D.ln wpi *2 Data Describe data List data *3 Graphics Twoway graph (scatter, line, etc.) 7

8 . regress D.ln wpi * 4. regress D.ln_wpi Source SS df MS Number of obs = 123 F( 0, 122) = 0.00 Model 0 0. Prob > F =. Residual R squared = Adj R squared = Total Root MSE = D.ln_wpi Coef. Std. Err. t P> t [95% Conf. Interval] _cons estat estat archlm Statistics Postestimation Reports and statistics estat : Reports and statistics: Test for ARCH effects in the residuals (archlm) Specify a list of lag orders to be tested: 1 1 estat archlm. estat archlm, lags(1) LM test for autoregressive conditional heteroskedasticity (ARCH) lags(p) chi2 df Prob > chi H0: no ARCH effects vs. H1: ARCH(p) disturbance p ARCH *4 Statistics Linear models and related Linear regression 8

9 ARCH GARCH(1, 1) D.ln wpi y t ARCH(1) { yt = x t β + ϵ t (M1) σt 2 = γ 0 + γ 1 ϵ 2 t 1 GARCH(1, 1) { yt = x t β + ϵ t σ 2 t = γ 0 + γ 1 ϵ 2 t 1 + δ 1 σ 2 t 1 (M2) GARCH(1, 1) ARCH GARCH [TS] arch p24-25 Statistics Time series ARCH/GARCH ARCH and GARCH models Model : Dependent variable: D.ln wpi Specify maximum lags: ARCH maximum lag: 1 GARCH maximum lag: 1 2 arch - Model 9

10 . arch D.ln_wpi, arch(1/1) garch(1/1) (setting optimization to BHHH) Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = (switching optimization to BFGS) Iteration 5: log likelihood = Iteration 6: log likelihood = Iteration 7: log likelihood = Iteration 8: log likelihood = Iteration 9: log likelihood = Iteration 10: log likelihood = ARCH family regression Sample: 1960q2 1990q4 Number of obs = 123 Distribution: Gaussian Wald chi2(.) =. Log likelihood = Prob > chi2 =. OPG D.ln_wpi Coef. Std. Err. z P> z [95% Conf. Interval] ln_wpi ARCH _cons arch L garch L _cons e arch (M2) β 0 = γ 0 = γ 1 = δ 1 = γ 1 p

11 3. ARCH/GARCH ARMA 4. EGARCH 5. PGARCH 6. 11

12 mwp-003 arima - arima (ARMA: autoregressive moving-average) arima ARMA ARMAX 1. ARMA 2. arima 2.1 ARIMA(1,1,1) ARMAX 1. ARMA ARMA [TS] arima Introduction p54 ARMA(1, 1) µ t ρµ t 1 θϵ t 1 t ϵ t 1 µ t, ϵ t ρ θ p q ARMA(p, q) ARMA(p, q) µ t = y t x t β (M1) µ t = ρ 1 µ t ρ p µ t p + θ 1 ϵ t θ q ϵ t q + ϵ t (M2) (M2) (M1) L c Copyright Math c Copyright StataCorp LP (used with permission) 12

13 ARMA x t ARMA(1, 1) ARMA(2, 2) (1) ARMA(1, 1) ARMA(p, q) (1 ρ 1 L)(y t β 0 ) = (1 + θ 1 L)ϵ t y t β 0 ρ 1 (y t 1 β 0 ) = ϵ t + θ 1 ϵ t 1 y t β 0 = ρ 1 (y t 1 β 0 ) + θ 1 ϵ t 1 + ϵ t (M3) ARMA(1, 1) (2) ARMA(2, 2) ARMA(2, 2) y t β 0 = ρ 1 (y t 1 β 0 ) + ρ 2 (y t 2 β 0 ) + θ 1 ϵ t 1 + θ 2 ϵ t 2 + ϵ t (M4) ARIMA(p, d, q) I integrated d ARMA(p, q) 2. arima 2.1 ARIMA(1,1,1) (wholesale price index) Example wpi1.dta. use * q1 1990q4. list wpi t if n <= 4 n >= ( N - 3), separator(4) * 2 *1 File Example Datasets Stata 11 manual datasets Time-Series Reference Manual [TS] arima *2 Data Describe data List data 13

14 wpi t q q q q q q q q4 wpi D.wpi wpi 1. twoway (line wpi t), title(wpi) * 3. twoway (line D.wpi t), yline(0) title(d.wpi) wpi D.wpi ARMA arima arima(p,d,q) ar(), ma() 2 AR 1 p MA 1 q 1 4 numlist ar(), ma() arima(p,d,q) d arima(1,1,1) D.wpi wpi *3 Graphics Twoway graph (scatter, line, etc.) 14

15 arima(p,d,q) arima wpi Statistics Time series ARIMA and ARMAX models Model : Dependent variable: wpi ARIMA(p,d,q) specification: p = d = q = 1 1 arima Model. arima wpi, arima(1,1,1) (setting optimization to BHHH) Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = (switching optimization to BFGS) Iteration 5: log likelihood = Iteration 6: log likelihood = Iteration 7: log likelihood = Iteration 8: log likelihood = ARIMA regression Sample: 1960q2 1990q4 Number of obs = 123 Wald chi2(2) = Log likelihood = Prob > chi2 =

16 OPG D.wpi Coef. Std. Err. z P> z [95% Conf. Interval] wpi ARMA _cons ar L ma L /sigma (M3) wpi t = ( wpi t ) ϵ t 1 + ϵ t sigma ϵ ar(), ma() arima D.wpi Statistics Time series ARIMA and ARMAX models Model : Dependent variable: D.wpi Supply list of ARMA lags: List of AR lags: 1 List of MA lags: 1 2 arima Model 16

17 . arima D.wpi, ar(1) ma(1) ARIMA(1, 1, 1) [TS] arima postestimation (mwp-055 ) ARMAX 17

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

卒業論文

卒業論文 Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1

More information

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr 1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.

More information

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp TS002 Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp-063 VAR postestimation vargranger Granger 86

More information

TS002

TS002 TS002 Stata 12 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 26 mwp-005 svar VAR 33 mwp-007 vec intro VEC 51 mwp-008 vec VEC 80 mwp-063 VAR vargranger Granger 93 mwp-062 varlmar

More information

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

こんにちは由美子です

こんにちは由美子です 1 2 λ 3 λ λ. correlate father mother first second (obs=20) father mother first second ---------+------------------------------------ father 1.0000 mother 0.2254 1.0000 first 0.7919 0.5841 1.0000 second

More information

Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide

Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide PS001 Stata 11 whitepaper mwp 4 mwp-027 23 mwp-028 / 41 mwp-001 51 mwp-078 62 mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide/long 100 mwp-036 ivregress 110 mwp-082 logistic/logit

More information

こんにちは由美子です

こんにちは由美子です Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr 3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:

More information

McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment

McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment Quasi-Experimenaion Ch.6 005/8/7 ypo rep: The Saisical Analysis of he Simple Inerruped Time-Series Quasi-Experimen INTRODUCTION () THE PROBLEM WITH ORDINAR LEAST SQUARE REGRESSION OLS (Ordinary Leas Square)

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

こんにちは由美子です

こんにちは由美子です 1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386

More information

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv(h:=y=ynikkei4csv,header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349

More information

2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d

2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d 2004 1 3 3.1 1 5 1 2 3.2 1 α = 0, λ t = 0 y it = βx it + µ i + ν it (1) 1 (1995)1998Fujiki and Kitamura (1995). 2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) +

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

arma dvi

arma dvi ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 例 題 で 学 ぶ Excel 統 計 入 門 第 2 版 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/084302 このサンプルページの 内 容 は, 第 2 版 発 行 当 時 のものです. i 2 9 2 Web 2 Excel Excel Excel 11 Excel

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

統計的仮説検定とExcelによるt検定

統計的仮説検定とExcelによるt検定 I L14(016-01-15 Fri) : Time-stamp: 016-01-15 Fri 14:03 JST hig 1,,,, p, Excel p, t. http://hig3.net ( ) L14 Excel t I(015) 1 / 0 L13-Q1 Quiz : n = 9. σ 0.95, S n 1 (n 1)

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

II (2011 ) ( ) α β û i R

II (2011 ) ( ) α β û i R II 3 9 9 α β 3 û i 4 R 3 5 4 4 3 6 3 6 3 6 4 6 5 3 6 F 5 7 F 6 8 GLS 8 8 heil and Goldberger Model 9 MLE 9 9 I 3 93 II 3 94 AR 4 95 5 96 6 6 8 3 3 3 3 3 i 3 33 3 Wald, LM, LR 33 3 34 4 38 5 39 6 43 7 44

More information

-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n

-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n --.........................4..3. (autoregressive process)...5..4....6..5. (MA)...8..6. (ARMA)...8..7. (ARIMA)...8..8....8.3....8.3......4....3...4.. - (persistency) (serial correlation) m amias (988) 970

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

1 I EViews View Proc Freeze

1 I EViews View Proc Freeze EViews 2017 9 6 1 I EViews 4 1 5 2 10 3 13 4 16 4.1 View.......................................... 17 4.2 Proc.......................................... 22 4.3 Freeze & Name....................................

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

Risk Simulator 2012 User Manual (Japanese)

Risk Simulator 2012 User Manual (Japanese) Johnathan Mun, Ph.D., MBA, MS, CFC, CRM, FRM, MIFC RISK SIMULATOR 2012 CEO, [email protected] www.realoptionsvaluation.com 2005-2012 Microsoft 1.... 7 2011/2012... 13... 13 2.... 19?... 19...

More information

需 要 予 測 のための 統 計 モテ ルの 研 究 異 常 値 検 知 のための 基 本 的 モテ ルの 考 察 平 成 26 年 3 月 東 京 大 学 大 学 院 情 報 理 工 学 系 研 究 科 教 授 博 士 課 程 修 士 課 程 竹 村 彰 通 小 川 光 紀 笹 井 健 行 特 定 非 営 利 活 動 法 人 ヒ ュー コミュニケーションス 副 理 事 長 小 松 秀 樹 主 任

More information

!!! 2!

!!! 2! 2016/5/17 (Tue) SPSS ([email protected])! !!! 2! 3! 4! !!! 5! (Population)! (Sample) 6! case, observation, individual! variable!!! 1 1 4 2 5 2 1 5 3 4 3 2 3 3 1 4 2 1 4 8 7! (1) (2) (3) (4) categorical

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

Vol.65 No.2 大阪大学経済学 September 2015 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元大輔 谷﨑久志 要旨 JELR 1. はじめに Stata,, %.,

Vol.65 No.2 大阪大学経済学 September 2015 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元大輔 谷﨑久志 要旨 JELR 1. はじめに Stata,, %., Title Author(s) 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元, 大輔 ; 谷﨑, 久志 Citation 大阪大学経済学. 65(2) P.39-P.55 Issue Date 2015-09 Text Version publisher URL https://doi.org/10.18910/57097 DOI 10.18910/57097

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

201711grade2.pdf

201711grade2.pdf 2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35

More information

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99 218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.

More information

21世紀の統計科学 <Vol. III>

21世紀の統計科学 <Vol. III> 21 III HP, 2011 11 II 6 1 ( ) 1980 1 [email protected] 141 1 20 Journal of the Royal Statistical Society, Series B 20 1960 M.S. Bartlett, M.H. Quenouille, H. Wold, A.M. Walker, P. Whittle, E.J. Hannan,

More information

第2回:データの加工・整理

第2回:データの加工・整理 2 2018 4 13 1 / 24 1. 2. Excel 3. Stata 4. Stata 5. Stata 2 / 24 1 cross section data e.g., 47 2009 time series data e.g., 1999 2014 5 panel data e.g., 47 1999 2014 5 3 / 24 micro data aggregate data 4

More information