本文/報告2

Size: px
Start display at page:

Download "本文/報告2"

Transcription

1 Integral Three Dimensional Image with Enhanced Horizontal Viewing Angle Masato MIURAJun ARAITomoyuki MISHINA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/

2 38 NHK R&D/No.144/2014.3

3 p w h f w h p f Θ Ψ x y x n n x n y n p f n x X n n φ n w n NHK R&D/No.144/

4 y p X n p P 0 P 1 P n w n h 0 O 3 2 x p h n w 0 w() = h 0 /sin h() = w 0 sin w h p p 40 NHK R&D/No.144/2014.3

5 X n p A n n w n F F F F f A n B n F A n Θ n Ψ n p f φ n φ Θ Ψ Θ n Ψ n NHK R&D/No.144/

6 Xn Wn p n f p p f f F F φ φ A B w h θ Ψ Ω w h A B φ Ω θ x θ y 42 NHK R&D/No.144/2014.3

7 y Y 1 x y x 1 X 1 x x x x x x x x x x x x x x NHK R&D/No.144/

8 y y y y y y y y y y y y y y 44 NHK R&D/No.144/2014.3

9 NHK R&D/No.144/

10 46 NHK R&D/No.144/2014.3

解説2-12図

解説2-12図 10 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 11 12 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 13 14 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 15 16 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 17 18

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

18 () 2,000 4,300 1,200 3,900 2,000 4,000 2,200 6,000 1,600 4,100 1,400 3,900 1,800 4,200 3,400 4,100 1,600 4,000 1,600 9,400 1,800 6,400 1,200 4,100 2,000 5,400 1,800 3,900 1,800 4,000 1,800 5,400 2,500

More information

untitled

untitled -1- 12 3 7 8 3.5 ( ) 7 8 3 1 2 3 ( ) ( -2- 3 7 5 21 2 2-3- 2 2 18 ( 1) ( 1) ( ) 6. 9 ( 9 15 ) 7. 2 ( 9 ) ( 11 32 11 ) 11. 4 20. 10 ( 26 15 21 ) 23. 9 28. 4 ( 8 ) ( 34 ) 32. 9 ( 45 ) 32. 12 ( 10 13 ) 33.

More information

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt 1 2 3 4 5 6 7 8 9 10 11 No Image No Image 12 13 14 15 16 17 18 19 20 21 22 23 No Image No Image No Image No Image 24 No Image No Image No Image No Image 25 No Image No Image No Image No Image 26 27 28

More information

131314 131314 100 16712 1 1 16624 63 4 89 27 3 2 2 1 8 38418 23203 132 252710129 134 24 30201320 136 30 144 30146-18239 23 2 132144 132 64 1322132113261 13413412 1348134212 134622 63013626 1441330 3 11520

More information

労働法総論講義(2・完)

労働法総論講義(2・完) 173 174 175 176 .... 177 ............ NHK NHK.. NHK.................. 178 ........ 179 180 181 182 183 .. 184 185 186 187 .............. 188 .. 189 .. 190 .. 191 192 193 .. 194 195 196 .............. 197

More information

,938,235 3,876,091 3,805,600 3,704,298 3,673, , , , , , ,903

,938,235 3,876,091 3,805,600 3,704,298 3,673, , , , , , ,903 14 1 2.49 8% 1.41 1% 4.65 8% 2.24 1-1 14 1652 1.9 524 9.8% 1-2 5 55.2 912-1- 44.8 740 30 204 22.4 20 210 28.4 1-3 10 11 12 13 14 3,938,235 3,876,091 3,805,600 3,704,298 3,673,550 920,928 917,902 885,065

More information

2 5 28 4 1 47 2

2 5 28 4 1 47 2 4 4 5 28 1 2 5 28 4 1 47 2 10 10 22 78 10 28 2 2 10% NHK 30% 32% 3 4 5 1 150 1 5 1 20 2 3 1 2008 2 2 2009 2009 3 3 4 DNA 1 3 2 1 3 3 1 5 3 5 8 18 8 30 5 3 2 60 1 5 2 3 60 2 2 2 60 1 1 5 150 6 3 1 2 150

More information

1

1 1 2 3 1 1 2 3 4 5 6 2 3 4 5 6 7 8 14 4 5 6 7 8 () 9 10 3,948 3,725 2,946 11 201 12 13 4NBC 14 1. 2. 3. 4. 5.. 7... 10. 11. 12. 13. 14. 15. 16. 1. 1. 2. 3. 4. 5. 6. 7. 8. 15 1. 2. 3. 4. 1. 2. 3. 4. 5. 6.

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

紀要No.9_006王_CS.indd

紀要No.9_006王_CS.indd 1 2 3 4 5 87 9 2009 1937.1 6 1937.1 2 1937.3 1937.9 73 1941.6 77 1941.10 27 1943.9 1943.10 1944.12 1946.12 1947.1 5 1948.4 L 1949.9 10 1950.10 1953.1 1953.12 1956.5.16 1956.6 1966.9 30 1966.10 1967.4 1967.9

More information

1

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Ni-Cd 19 1 1 2 3 4 5 6 7 20 21 1 2 3 22 1 2 3 1 2 3 23 1 2 1 1 1 24 25 1 1 2 3 2 26 1 2 1 27 1 2 3 28 1 2 3 29 30 31 32 33 34 35 1 1 36 1 2 37 38 1 2 3 1 39

More information

22 21

22 21 20 19 22 21 24 23 26 25 28 27 30 29 32 31 33 34 36 35 WN7501010 WN7502010 WN7503010 WN7506 WN7509 WN7512 WN7515 WN7518 WR3504 WR3508 WR3512 WR3516 WR3520 WR3524 280 550 1,100 1,680 2,500 3,900 WN6501K

More information

 

  ( ) , 1 2 3 4 5 50 50 10 27 400 500 20 60 6 89 97 20 27 100 20 30 40 500 3000 4000 50 7 30 27 8 9 15 30 10 64 13 20 150 10 280 10 10 10 104 11 10 NHK 10 300 40 12 2000 2000 2000 500 500 500 300 500 300

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

6.5 5.5 900 1235 915 1250 940 1315 950 1320 1015 1355 1025 1405 1035 1435 1100 1455 1150 1

6.5 5.5 900 1235 915 1250 940 1315 950 1320 1015 1355 1025 1405 1035 1435 1100 1455 1150 1 6.5 5.5 900 1235 915 1250 940 1315 950 1320 1015 1355 1025 1405 1035 1435 1100 1455 1150 1 2 3 * (* ) 4 5 6 7 8 9 10 18701949 () 31870 5 12 71874 10 18401925 131880 3 18381903 441911 11 1,600 241949 1

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

21 13 18 11 23 26 15 24 25 31 24 27 31 12 17 18 25 10 16 10 27 11 12 22 2 21 21 NHK 22 24 22 51 52 21 18 260-2 -

21 13 18 11 23 26 15 24 25 31 24 27 31 12 17 18 25 10 16 10 27 11 12 22 2 21 21 NHK 22 24 22 51 52 21 18 260-2 - 22 15 1 21 2 21 3 21 1 21 2 3 22 4 22 5 22 6 21 1 21 24 gr gr gr 14 gr gr 27 gr 31 gr gr gr 25 gr gr gr 16 gr 31 gr gr 17 gr 22 gr 26 gr - 1 - 21 13 18 11 23 26 15 24 25 31 24 27 31 12 17 18 25 10 16 10

More information

午後1時15分開会

午後1時15分開会 4 1 42 46 3 56 5 4 16 9 5 60 900 10 10 20 10 40 8 4 26 6 8 68 2841 4 3 15 1315 25 25 194520 2 17 20 3 GHQ GHQ 6363 215 34101 466 39 14194 93 145 466 2,7706 2110 2153 2262245 12 22420 22425 143131 126

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

大連便り思いつくまま -_5_.PDF

大連便り思いつくまま -_5_.PDF () 17 Record China 1 2 1 12 1 1 12 10 1 28 3 10 2 9 2 3 1 ) 1 20 1 1 26 7 7 12 12 9 NEWS 2 11 11 11 50 50 50 2 4 4 2 1 8 12 100% 80 % NHK 2000 2 4 1 12 12 2 1 1 1 1 1 2007 2 2 16 2006 2 12 10 36 36 490

More information

+08APSアンダーソンカタログ.indd

+08APSアンダーソンカタログ.indd ANDERSON POST-TENSIONING SYSTEM ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

16 () 2,000 4,300 1,200 4,200 2,000 4,000 2,200 6,400 1,400 4,200 1,600 4,300 1,800 4,200 3,400 4,300 1,600 4,000 1,600 9,400 1,800 6,400 2,000 5,400 1,800 4,200 1,200 4,000 1,800 4,000 1,800 5,400 2,500

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

(1) %

(1) % 1 (2008.9.20) 3 (1) 2006 92% 200 200 5 6 2006 2006 2 30 5 2006 1 4 5 3 (3 ) 6000 7000 6000 7000 30 NHK 12.5% 24.1% 4 1 10 4 2006 1 3 2006 2006 (2) (a)90 2006 2006 12 3 90 (1) 3 40 50 30 40 40 50 4 5 30

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V

More information