本文/報告2
|
|
|
- ひでより ねごろ
- 9 years ago
- Views:
Transcription
1 Integral Three Dimensional Image with Enhanced Horizontal Viewing Angle Masato MIURAJun ARAITomoyuki MISHINA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/
2 38 NHK R&D/No.144/2014.3
3 p w h f w h p f Θ Ψ x y x n n x n y n p f n x X n n φ n w n NHK R&D/No.144/
4 y p X n p P 0 P 1 P n w n h 0 O 3 2 x p h n w 0 w() = h 0 /sin h() = w 0 sin w h p p 40 NHK R&D/No.144/2014.3
5 X n p A n n w n F F F F f A n B n F A n Θ n Ψ n p f φ n φ Θ Ψ Θ n Ψ n NHK R&D/No.144/
6 Xn Wn p n f p p f f F F φ φ A B w h θ Ψ Ω w h A B φ Ω θ x θ y 42 NHK R&D/No.144/2014.3
7 y Y 1 x y x 1 X 1 x x x x x x x x x x x x x x NHK R&D/No.144/
8 y y y y y y y y y y y y y y 44 NHK R&D/No.144/2014.3
9 NHK R&D/No.144/
10 46 NHK R&D/No.144/2014.3
解説2-12図
10 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 11 12 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 13 14 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 15 16 NHK R&D/No.133/2012.5 NHK R&D/No.133/2012.5 17 18
~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I
18 () 2,000 4,300 1,200 3,900 2,000 4,000 2,200 6,000 1,600 4,100 1,400 3,900 1,800 4,200 3,400 4,100 1,600 4,000 1,600 9,400 1,800 6,400 1,200 4,100 2,000 5,400 1,800 3,900 1,800 4,000 1,800 5,400 2,500
untitled
-1- 12 3 7 8 3.5 ( ) 7 8 3 1 2 3 ( ) ( -2- 3 7 5 21 2 2-3- 2 2 18 ( 1) ( 1) ( ) 6. 9 ( 9 15 ) 7. 2 ( 9 ) ( 11 32 11 ) 11. 4 20. 10 ( 26 15 21 ) 23. 9 28. 4 ( 8 ) ( 34 ) 32. 9 ( 45 ) 32. 12 ( 10 13 ) 33.
Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt
1 2 3 4 5 6 7 8 9 10 11 No Image No Image 12 13 14 15 16 17 18 19 20 21 22 23 No Image No Image No Image No Image 24 No Image No Image No Image No Image 25 No Image No Image No Image No Image 26 27 28
131314 131314 100 16712 1 1 16624 63 4 89 27 3 2 2 1 8 38418 23203 132 252710129 134 24 30201320 136 30 144 30146-18239 23 2 132144 132 64 1322132113261 13413412 1348134212 134622 63013626 1441330 3 11520
労働法総論講義(2・完)
173 174 175 176 .... 177 ............ NHK NHK.. NHK.................. 178 ........ 179 180 181 182 183 .. 184 185 186 187 .............. 188 .. 189 .. 190 .. 191 192 193 .. 194 195 196 .............. 197
,938,235 3,876,091 3,805,600 3,704,298 3,673, , , , , , ,903
14 1 2.49 8% 1.41 1% 4.65 8% 2.24 1-1 14 1652 1.9 524 9.8% 1-2 5 55.2 912-1- 44.8 740 30 204 22.4 20 210 28.4 1-3 10 11 12 13 14 3,938,235 3,876,091 3,805,600 3,704,298 3,673,550 920,928 917,902 885,065
2 5 28 4 1 47 2
4 4 5 28 1 2 5 28 4 1 47 2 10 10 22 78 10 28 2 2 10% NHK 30% 32% 3 4 5 1 150 1 5 1 20 2 3 1 2008 2 2 2009 2009 3 3 4 DNA 1 3 2 1 3 3 1 5 3 5 8 18 8 30 5 3 2 60 1 5 2 3 60 2 2 2 60 1 1 5 150 6 3 1 2 150
1
1 2 3 1 1 2 3 4 5 6 2 3 4 5 6 7 8 14 4 5 6 7 8 () 9 10 3,948 3,725 2,946 11 201 12 13 4NBC 14 1. 2. 3. 4. 5.. 7... 10. 11. 12. 13. 14. 15. 16. 1. 1. 2. 3. 4. 5. 6. 7. 8. 15 1. 2. 3. 4. 1. 2. 3. 4. 5. 6.
NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................
NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................
紀要No.9_006王_CS.indd
1 2 3 4 5 87 9 2009 1937.1 6 1937.1 2 1937.3 1937.9 73 1941.6 77 1941.10 27 1943.9 1943.10 1944.12 1946.12 1947.1 5 1948.4 L 1949.9 10 1950.10 1953.1 1953.12 1956.5.16 1956.6 1966.9 30 1966.10 1967.4 1967.9
1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Ni-Cd 19 1 1 2 3 4 5 6 7 20 21 1 2 3 22 1 2 3 1 2 3 23 1 2 1 1 1 24 25 1 1 2 3 2 26 1 2 1 27 1 2 3 28 1 2 3 29 30 31 32 33 34 35 1 1 36 1 2 37 38 1 2 3 1 39
22 21
20 19 22 21 24 23 26 25 28 27 30 29 32 31 33 34 36 35 WN7501010 WN7502010 WN7503010 WN7506 WN7509 WN7512 WN7515 WN7518 WR3504 WR3508 WR3512 WR3516 WR3520 WR3524 280 550 1,100 1,680 2,500 3,900 WN6501K
( ) , 1 2 3 4 5 50 50 10 27 400 500 20 60 6 89 97 20 27 100 20 30 40 500 3000 4000 50 7 30 27 8 9 15 30 10 64 13 20 150 10 280 10 10 10 104 11 10 NHK 10 300 40 12 2000 2000 2000 500 500 500 300 500 300
E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656
SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
6.5 5.5 900 1235 915 1250 940 1315 950 1320 1015 1355 1025 1405 1035 1435 1100 1455 1150 1
6.5 5.5 900 1235 915 1250 940 1315 950 1320 1015 1355 1025 1405 1035 1435 1100 1455 1150 1 2 3 * (* ) 4 5 6 7 8 9 10 18701949 () 31870 5 12 71874 10 18401925 131880 3 18381903 441911 11 1,600 241949 1
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
21 13 18 11 23 26 15 24 25 31 24 27 31 12 17 18 25 10 16 10 27 11 12 22 2 21 21 NHK 22 24 22 51 52 21 18 260-2 -
22 15 1 21 2 21 3 21 1 21 2 3 22 4 22 5 22 6 21 1 21 24 gr gr gr 14 gr gr 27 gr 31 gr gr gr 25 gr gr gr 16 gr 31 gr gr 17 gr 22 gr 26 gr - 1 - 21 13 18 11 23 26 15 24 25 31 24 27 31 12 17 18 25 10 16 10
午後1時15分開会
4 1 42 46 3 56 5 4 16 9 5 60 900 10 10 20 10 40 8 4 26 6 8 68 2841 4 3 15 1315 25 25 194520 2 17 20 3 GHQ GHQ 6363 215 34101 466 39 14194 93 145 466 2,7706 2110 2153 2262245 12 22420 22425 143131 126
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
untitled
No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾
Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V
大連便り思いつくまま -_5_.PDF
() 17 Record China 1 2 1 12 1 1 12 10 1 28 3 10 2 9 2 3 1 ) 1 20 1 1 26 7 7 12 12 9 NEWS 2 11 11 11 50 50 50 2 4 4 2 1 8 12 100% 80 % NHK 2000 2 4 1 12 12 2 1 1 1 1 1 2007 2 2 16 2006 2 12 10 36 36 490
+08APSアンダーソンカタログ.indd
ANDERSON POST-TENSIONING SYSTEM ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON TECHNOLOGY CORPORATION ANDERSON
数値計算:常微分方程式
( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )
16 () 2,000 4,300 1,200 4,200 2,000 4,000 2,200 6,400 1,400 4,200 1,600 4,300 1,800 4,200 3,400 4,300 1,600 4,000 1,600 9,400 1,800 6,400 2,000 5,400 1,800 4,200 1,200 4,000 1,800 4,000 1,800 5,400 2,500
85 4
85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V
A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................
(1) %
1 (2008.9.20) 3 (1) 2006 92% 200 200 5 6 2006 2006 2 30 5 2006 1 4 5 3 (3 ) 6000 7000 6000 7000 30 NHK 12.5% 24.1% 4 1 10 4 2006 1 3 2006 2006 (2) (a)90 2006 2006 12 3 90 (1) 3 40 50 30 40 40 50 4 5 30
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
untitled
Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-
1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V
