24.15章.微分方程式
|
|
|
- ひとお かたいわ
- 9 years ago
- Views:
Transcription
1 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt
2 dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt y( t) = g t + C y( ) = H y( t) = g t + H t y= = H / g V y t y= ( ) = gt y= = gh
3 θ x axis: m d x dt = y axis: m d y dt = mg V x = dx dt = C θ C = V o cos V x = dx dt = V cos o θ x = ( V o cos )t V y = dy dt = gt + C θ V y = dy dt = gt + V sin o y = g t + ( V o sin )t t = x V o cos
4 y = g x V o cos ( x + V o sin V o cos ( = g V o cos ) + x ( V o cos ) ( ) * g ( x V o cos ), ( ), g g y = V o cos g = V o cos * + x V o ( ) g = V o cos x V o ( ) cos sin ( g ) sin ( g ) sin ( cos ) V o cos g ( + V cos o ) g + V o sin g,+ ( ) sin 3 cos 4 5 sin - ( / cos / ). sin cos x -+. /+ θ Y[m] () V o () () X[m] θθ θ)=θ)
5 () *+,- (, +)9 ()* +,-./ : θ m d ( L ) = mgsin dt sin = sin + L d = g dt o = g / L d dt + = θ = o cos( o t) d dt = o o sin( o t) d dt = o o cos( o t) = o o = g L f = o = g L T = f = L g sin = 3 / 3
6 dx dt = kx dx x = kdt log e x = k dt = kt + C x = e kt+c = e C e kt x = x o = e C x = x o e kt dn dt = kn dn / N = kdt log e N = kt + c N t ( ) = N o e kt N / N o = / e kt.5 = / k = log e / t.5 ( ) N t ( ) = N o e log e t /t.5 t = { log e ( N o / N ) / log e }t.5 t.5 K(/s) / / / 3 8 x x x x - 3
7 k = log e / t.5 =.693/ / t.5 k =.693/ / 8 [ / days] =.8665 [ / days] t = log e ( N o / N ) = k log e ( ).8665 [ / days] = 4.65 = 53.6 [days].8665 [ / days] dn dt = kn dn dt = { k( N )}N dn N N ( ) = kdt N + ( dn = ( N ) ( kdt log N log N N N = ekt +C N = e kt +C Ne kt +C e kt +C N = kt +C e ( ) ( ) = kt + C
8 N o N o = e C N = ec e kt = N o e kt e C e kt N o N o e kt N o N = o e kt ( N o N o e kt ) L di + RI = V dt I = = L / R
9 di dt = V L I = V L I ( di I V L ( log I V L = dt ( = t + C I t ( ) = V L + ec e t e C = I o ( ) = V L + I oe t I t I ( ) = V / L + I o = I o = V / L ( ) = V L e I t t ( = V R e t ( = L / R I = V / R = L / R =.5 s I=V/R I=V/R(- Exp[-(t-5)/τ I=V/R Exp[-(t-5)/τ I = V / R ( ) = V L + I o e I t t I = I o e t [A] = [A][]
10 I o = V / R I = dq / dt RI + Idt C o = V I = dq / dt R dq dt + Q C o = V dq dt ( ) = Q C ov RC o dq ( Q C o V ) = dt RC o log( Q C o V ) = t + c Q( t) = e c e RC o t RC o + C o V Q( ) = = e c + C o V Q( t) = C o Ve t RC + C o V = C o V e t RC o I ( t) = dq dt = C o V e RC o t RC o = V t R e RC o
11 L di dt + C o L d I dt o = / Idt = V + I C o = LC o d I dt + o I = RI = V o sin t ( ) () * I = V o sin (t) R Q C o = C o Idt = V o sin (t) I = V C o cos (t) o
12 ( ) I = C o V o cos t ω L di dt = V sin t o ( ) I = V o L sin (t) dt = V o L cos (t) ω L di dt + RI = V o sin t ( ) e it = cos (t) + isin (t) ω V = V o e it I = I o e it
13 L d ( I o ) eit + R( I o e it ) = V o e it dt LI o ie it + R( I o e it ) = V o e it V o = I o ( R + i L) ()*+ V = V o e it = I o ( R + i L)e it I = I o e it tan = L / R δ L di dt + RI = V o sin (t) I = I o sin (t) V o sin (t) = LI o cos (t) + RI o sin (t) = I o { Rsin (t) + L cos (t)} = I o R + ( L ) sin (t + ) cos = R ( ) sin = L R + ( L ) R + L tan = L / R δ V o = I o R + L ( ) C Idt + RI = V o sin (t) V = V o e it I = I o e it
14 C I o eit dt + R( I o e it ) = V o e it I o ic eit + R( I o e it ) = V o e it *+,-.) ( V o = I o R + ic V = V o e it = I o ( R i / C)e it I = I o e it tan = /CR δ C Idt + RI = V o sin (t) I = I o sin (t) () * V o sin (t) = C I o cos (t) + RI o sin (t) = I o Rsin t ( ) cos ( t ) C ( = I o R + sin t + ) C ( ) ( ) R cos = R + (C) sin = C R + C ( ) tan = /CR δ ( ) V o = I o R +/ C di dt = V o cos t ( ) I C ( / R
15
16
17 α alpha β beta γ Γ gamma δ Δ delta ε epsilon ζ η eta θ Θ, theta ι iota κ kappa λ Λ lamda µ mu ν nu ξ Ξ ( xi (ksi) ο omicron π Π pi ρ rho σ Σ sigma τ tau υ Υ upsilon φ ϕ Φ phi χ chi ψ Ψ psi ω Ω omega
18
19 π
20 σv π
21
22 34 = = = = / / 8 / / / 4 / 3 / 5 / / 5 7 / 8 4 / 7 a = kb c = kd kb + b k + kd + d = = kb b k kd d a / b + c / d + = a / b c / d ( ) = x + 4x + 4 ( x 3) = x 6x + 9 ( x + 4) ( x 4) = x 6 ( )( x + 6) = x +x + 3 ( x +) ( x + ) ( x + 3) = 6 + x + 6x + x 3 ( ) x + 5x + 6 = ( x + ) ( x + 3) x 5 = x 5 ( )( x + x +) x + x + 5 x 4x + 4 = x x + 5 = x + i 5 ( )( x i 5) x3 + 9x + 9x + 8 = x + 8 y = / 3x S = t + 5 ( )( x + 5) [km / h]v = 36 [km / h] ( t =.485[h] y = 7tV = 8.[km / h]
23 Cs = 34 [m/s] L = C s t = 34[m / s] 3 = [m] ( =.[m] =.375[m] V = R = 637[km] / 4[h] = 667 [km/h]=463[m/s]=.36 x = / 3 x = 4 x = 3 t = t = 6 x > 4 t < t < 6 x = 5 /7, y = 4 /7 x = / 4, y =, z = / 4 y = x y = x + 5 y = x ( ) + 5 y = x x + x = ( / )t = t = / 4 = 7.7 s V = t = = 8.8 [m / s] 5 ( ) / () ( 7 5) / (3) ( ) / 3 i i i x = 3 ± i 5 x = ± i x = 3 ± 5 x = ± ( ) / 8 x = 3 ± i 7 ( ) / x = ± i 3 i 5 + i / ) ) = 5 + = ( ) 5 = ( ) =
24 6 = 6 + = ( ) 6= + log x log a x m( x) = m 3 log( x) = log 3 =.477 x =.477/ =.9748=.58 = r =.5 /8 (.) ( 6 ) = = = = ( ) 3 =.57[m] 5 /8(radian) 7 /8(radian) = r = [m] S = r = [m ] + = = 4 = + = ( ) = sin ( / 4) = / sin ( ) = cos ( / ) = ( ) = cos( 3 / 4) = / tan ( ) = tan ( / 4) = ( ) = tan( 7 / 4) = sin / cos tan 3 / 4 sin ( ) = 5 ( ) / 6 cos ( + ) = ( 3 5 ) / 6 ( ) = ( 4 5 3) / 7 tan = / 3, tan = 5 / tan +
25 sin 4 cos = { sin( 4 + ) + sin ( 4 )} = { sin( 6 ) + sin ( )} cos sin = { sin( + ) sin ( )} = { sin ( 3 ) sin ( )} cos cos 4 = { cos( + 4 ) + cos ( 4 )} = { cos( 6 ) + cos ( )} sin sin = { cos( + ) cos ( )} = { cos ( 3 ) cos ( )} cos = a / a + b = / sin = b / a + b = 3 / tan = 3 = / 3 sin + cos = sin + / 3 ( ) a sin A = b sin B = c sinc = R 6 cm sin 3 A = = 3o B = a sin 3 o = b sin6 o = = 6o C = 6 cm = R R = = 6 cm o o sin = 9o c sin9 o a :b : c = : 3 : = : 3 : a sin A = b = R sin B m sin o = b sin 3o b = o sin 3 sin = o = m S = absinc = 3 3 sin 3o = 5 3 = 8.86 m 3 ) ( s = a + b + c = = 9 m
26 S = { s a} { s b} { s c}s = { 9 5} { 9 6} { 9 7}9 = 4i3ii9 = 4.69 m sin = 6, sin = 3 4, cos = 6, cos = 4 3, tan = 6 tan 3 = 3 ~ /
27 )* ( U + V = + 5 =.8 km/h A x = cos(3 o ) = 5 3A y = sin(3 o ) = 5 cos = A x B x + A y B y + A z B z A x + A y + A z B x + B y + B z = A x + A z A z B z B y + B z = = = 6 o V = A x B x C x A y B y C y A z B z C z = = = 6m 3
28 A B = ( A B A B y z z y )i + A z B x A x B z = 4i 4j + 4k ( )k ( ) j + A x B y A y B x A B = = 3 4 = 4 3 E = ( A B) E ( C D) = ( EiD)C ( EiC)D t = aib bib = a xb x + a y b y + a z b z 3 + = b x + b y + b z =.5 c = a + tb ( ) =. ( ) =.88 ( ).5 =.44 c x = a x + tb x = 3 /.5 c y = a y + tb y = /.5 c z = a z + tb z = + /.5 L = c x + c y + c z = x y z = = 3.6 a = 3.6 R I + R I I R I I ( ) = V V ( ) + R 3 I = V I = 4 = = 9 3 = 3 I = 4 = = 6 3 = () line () line (3) line 4 () line 5 (3) line 3 () line = 5 = () - (3)
29 S = / 3 S = / 9 S = 9 S = B / ( B A) S = 9 / 8 S = / S = 9 /9 S = A / (A + B) dy / dx =.6 dy / dx = 4 / 5 dy / dx = x dy / dx = x 3 dy / dx = 5x dy / dx = ( 3 / ) x 6x + a 6 + 6a 5 b + 5a 4 b + a 3 b 3 + 5a b 4 + 6ab 5 + b 6 dy / dx = ax + b dy / dx = 3ax + bx + c dy / dx = / x dy dx = a x + 4b 3 x dy dx = anxn bcx c 5 dy y = 7x 5 + 6x 3 + 9x y = ( 7x 5 + 6x 3 + 9x + ) / ( 3x + ) y = 8( 3x + x + ) 3 ( 3x + ) dx = dy mxm dx = 6x5 5x 4 + 9x x y = x / 4 x y = 6x / ( x + ) 4 y = x x / x + 4 dx dy = 3y dy dx = 3y = 3x 3 dx dy = 4y3 dy dx = 4y 3 = dy / dx = sin x dy / dx = 6cos 3x dy / dx = 6 / cos 3x y = 5sin 4 x cos x y = 3cos 3 x + y = 6xsin( 3x +) sin y = x cos y dy dx = x dy dx = x cos y = x sin y = x x cos y = dy sin y x dx = x 3 dy dx = x 3 cos y = x 3 x / a ( ) = x 3 a tan y = sin x a x 4x 3 4
30 ( + tan y) dy dy = cos x dx dx = cos x + sin x dy / dx = x log dy / dx = 5 x log 5 u = sin x y = e dy u dx = dy du du dx = eu cos x = e sin x cos x u = x y = e dy u dx = dy du du dx = eu x = xe x log y = ( log x) / x d log y dx = y dy dx = x log x + x x = x ( log x) dy dx = x x x ( log x) log y = sin x y log y = x x y dy dx = dx x dx = x x dy dx = dy x dx = ( + log x) y x = e sin x x dy / dx = yx x ( + log x) = e xx x x ( + log x) y = 4x L = x + y ( ) S = xy = x( L / x) = L / x x ds / dx = L / x = x = L / 4 V = RI = ri = R p I R p = Rr / R + r I = V / r = I R / R + r ( ) P = ri = r I R / ( R + r) ( ), ( ( )), ( ( )) dy / dx = sin x = cos x + / d y / dx = cos x = cos x + / y (n) = cos x = cos x + n / b y () ydy = a b kdx = k dx = k x a b a b a = b ( a ( ) = R I r / R + r y = sin x = cos x + 3 / [ ] b a = k( b a) df (x) 5 t () tdt = 5 ( ) ( ) ( ( )) b = f (x) a = 5 ( = 5 [ ] a b = f (b) f (a)
31 a x dx = a x 3 3 ( +a a y = y = x dx = y = = a3 a z 3 3 z dz = 3 ( a m + xm+ + C y = t + +a a = a3 5 3 t t 3 dt = x x + C y = x dx = 5 5 x + C x dx = x + C y = x dx = x + C y = 7 x7 5 x6 + x 3 x + C y = 5 x x 3 + x + C y = x + x x 5 = 5 3 ( x) + x = = + x + x + x + x + x x + x + ii = + x x + x x + x x + x ( ) y = + xdx = + x = x + x x + x x + x x + x x y = cos( x) dx = x sin dx = ( ) + C 3sin ( x ) sin x dx = 3 cos x dx = x sin x + C cos ( x ) + C xsin xdx = x( cos x) dx = x cos x cos x = x cos x + cos x + C x sin xdx = x ( cos x) dx = x cos x ( x)cos xdx = x cos x + x( sin x) dx = x cos x + xsin x sin xdx = ( x )sin x + xsin x + C t = x + a y = y = t dt = 4 ( ) 3 x + a 3 + C t = ax + b dt = adx sint dt cos(ax + b) t = + C t = x + a dt = xdx y = a a dt = 4 t + C
32 t = ax + b dt = adx y = dx = x x 3 x dx = x t a dt = a t + C ( x 3) ( x +) dx = 4 x + x 3 ( dx = log x + log x 3 4 = 4 log x 3 x + + C ( ) x 3 3 d x 3 3 = 3 log x3 3 + C ( ) cos x dx = d + sin x + sin x = log + sin x + C + sin x x e x dx = x ( e x ) dx = x e x xe x dx = x e x xe x e x dx = ( x x + )e x + C ( ) x 3 e x dx = x 3 e x dx = x 3 e x 3 x e x dx = x 3 e x 3 x x + ( ) e x + C x ( x ) ( x +) dx = x ( x ) x ( ( x +) ( dx = ( x ) dx + ( x ) dx = log x x ( ) log x + ( + C x ( x +) dx ( ( x 3 dx = x x ( x +) dx = x x + ( +) x + ( ) ( ) + x x + dx = ( ) x ( ) + log x + + C x + + x = t x + x = t + t x = t t dx = t + dt t x + x dx = t t t + dt = t t + t t dt = t t + ( dt = log t log t + = log t t + tan x / ( ) = t dx = + sin x + cos x dt + t + t + t + t = + t dt = + t + t + t dt = log + tan x + t + C
33 S = L = / / d asin cos 4 = 4 d = a d = a ( sin 4 4 ) * r dx / dt = 3a cos t sint dy / dt = 3asin t cost / S = ( ) ( 3acos t sint ) + ( 3asin t cost) dt = 3a cos t sin t ( cos t + sin t) dt / = 4 3a sint costdt = a sint d sint S = ( x x) dx = 3 3 x. r / x ( / ( ) = a sin t = 3 = 6 d asin cos 4 = 4 d = a d / = a ( sin 4 4 ) * ( ) / = a f x = f / x = y f y = f / y = x / ) ( / = 6a / = a c c S = x + y + dx dy = d r + r dr = u du = 3 3 u ) ( c + = 3 ( c + ) 3 * ( ) x = r cos, y = r sin u = r + du = rdr S = / ( )( Rd ) Rsin = R sin d = 4 R cos / = R /3 y = / /3 [ ] /3 R x x G = R y xdx dy S = xydx R / = 4 R R 4 x R x dx R = R x d(r x ) R ( ) y = * R, 3 R x + ( ) 3 R x = t - /. R = R 3 *+ R3 -. = 4R 3 =.48R M = SL S = M / L I = m i r i = x dxs = M L i L/ L/ ( ) L/ L/ x dx = M L x 3 3 ( * ) L/ L/ = M ( L L / ) 3 = ML 3
34 r x = x x + y + z = r = z y y ( z ) * i + x z z ( x ) * j + y x x ( y ) * k = r = x x + y y + z z = 3 z = e i x x + y + z = x r r y = y r r z = z xi + yj + zk r = = r r r r e i ( + ) = cos + ( ) + isin ( + ) { }{ cos + isin } = ( cos cos sin sin ) + i( sin cos + cos sin ) = e i e i = cos + isin V y = gt +V o = t = V o / g y = ( g / )t +V o t = t = V o / g V y = g V o / g RdQ / dt + Q / C o = Q t ( ) = e c e t RC o Q( ) = C o V C o V = e c Q( t) = C o Ve L di dt + RI + C Idt = V o sin t ( ) -->V o = i L + R + ( ) +V o = V o t RC o ic o I = R + i L ( o C o I o L C o ( ) I o
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
2 p T, Q
270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
C:/KENAR/0p1.dvi
2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x
7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E
B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {
7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3
Gmech08.dvi
51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................
( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)
rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
slide1.dvi
1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
I 1
I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg
1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0
A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
TCSE4~5
II. T = 1 m!! U = mg!(1 cos!) E = T + U! E U = T E U! m U,E mg! U = mg!(1! cos)! < E < mg! mg! < E! L = T!U = 1 m!! mg!(1! cos) d L! L = L = L m!, =!mg!sin m! + mg!sin = d =! g! sin & g! d =! sin ! = v
Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..
Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x
168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad
13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =
1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b
M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -
M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =
1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v
f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >
5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =
ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d
A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
II 2 II
II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................
sec13.dvi
13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y
5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =
1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2
1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................
2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................
受賞講演要旨2012cs3
アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
6. Euler x
...............................................................................3......................................... 4.4................................... 5.5......................................
v er.1/ c /(21)
12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,
128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds
127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds
DVIOUT
A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s
... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z
3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α
2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,
1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1
1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
Untitled
23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n
x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin
2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)
< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (
II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )
1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (
1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +
Microsoft Word - 触ってみよう、Maximaに2.doc
i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R
II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =
. p.1/14
. p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z
Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y
2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )
http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b
330
330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1
確率論と統計学の資料
5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................
