²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾
|
|
|
- おきまさ もちやま
- 7 years ago
- Views:
Transcription
1 Kano Lab. Yuchi MATSUOKA December 22, / 32
2 ARMA 2.1 ARMA 2 / 32
3 ARMA 2.1 ARMA 3 / 32
4 / 32
5 / 32
6 1.1.3 y t µ t = E(y t ), V ar(y t ) = E(y t µ t ) 2. V ar(y t ) γ kt = Cov(y t, y t k ) = E[(y t µ t )(y t k µ t k ]. - - k 6 / 32
7 ρ kt = Corr(y t, y t k ) = Cov(y t, y t k ) V ar(yt ) V ar(y t k ) = γ kt γ0t γ 0,t k - - ρ 0t = 1. - k - 7 / 32
8 t t {y t } T t=1 {y t} t= t= 8 / 32
9 ARMA 2.1 ARMA 9 / 32
10 - Definition ( ) t k E(y t ) = µ Cov(y t, y t k ) = E[(y t µ)(y t k µ)] = γ k. 10 / 32
11 Definition ( ) t k (y t, y t+1,..., y t+k ) T i.e, t,k 11 / 32
12 ARMA 2.1 ARMA 12 / 32
13 Definition (iid ) i.i.d. iid iid 0 iid Definition ( ) t σ 2, k = 0 E(ϵ t ) = 0, γ k = E(ϵ t ϵ t k ) = 0, k 0 ϵ t 13 / 32
14 ARMA 2.1 ARMA 14 / 32
15 1 ȳ = 1 T T y t, ˆγ k = 1 T t=1 T t=k+1 (y t ȳ)(y t k ȳ), k = 0, 1, 2,... ˆρ k = ˆγ k ˆγ 0, k = 1, 2, 3,... 2 H 0 : ρ k = 0 vs H ρ k N(0, 1/T ) 15 / 32
16 H 0 : ρ 1 = ρ 2 = = ρ m = 0 vs H 1 : k [1, m] ρ k 0. Q(m) = T (T + 2) m k=1 ˆρ 2 k T k χ 2 (m) 16 / 32
17 ARMA 2.1 ARMA 17 / 32
18 ARMA ARMA 18 / 32
19 ARMA 2.1 ARMA 19 / 32
20 - y t y t 1 { y t = a + b y t 1 = b + c - y t y t 1 y t = ay t 1 + b (MA) (AR) 20 / 32
21 2.1.1 MA MA MA(1) y t = µ + ϵ t + θ 1 ϵ t 1, ϵ t W.N.(σ 2 ) y t MA(1) - y t 1 = µ + ϵ t 1 + θ 1 ϵ t 1 ϵ t 1 θ 1 21 / 32
22 mu=0, theta1=0.8, sig=1 mu=2, theta1=0.5, sig= mu=2, theta1=0.3, sig=2 mu=0, theta1=0.3, sig= mu=2, theta1=0.5, sig=0.5 mu=2, theta1=0.8, sig= / 32
23 MA(1) µ E(y t ) = E(µ + ϵ t + θ 1 ϵ t 1 ) = µ θ 1 0 = µ. ϵ γ 0 = V ar(y t ) = V ar(µ + ϵ t + θ 1 ϵ t 1 ) = V ar(ϵ t + θ 1 ϵ t 1 ) = V ar(ϵ t ) + θ1v 2 ar(ϵ t 1 ) + 2θ 1 Cov(ϵ t, ϵ t 1 ) = σ 2 + θ1σ = (1 + θ1)σ 2 2. θ 2 1σ 2 ϵ 23 / 32
24 MA(1) γ 1 = Cov(y t, y t 1 ) = Cov(µ + ϵ t + θ 1 ϵ t 1, µ + ϵ t 1 + θ 1 ϵ t 2 ) = Cov(ϵ t + θ 1 ϵ t 1, ϵ t 1 + θ 1 ϵ t 2 ) = Cov(ϵ t, ϵ t 1 ) + Cov(ϵ t, θ 1 ϵ t 2 ) + Cov(θ 1 ϵ t 1, ϵ t 1 ) + Cov(θ 1 ϵ t 1, θ 1 ϵ t 2 ) ( 0) = θ 1 Cov(ϵ t 1, ϵ t 1 ) = θ 1 σ 2. ρ 1 = γ1 γ 0 = θ1 1+θ t MA(1) 24 / 32
25 MA(q) q y t = µ + ϵ t + θ 1 ϵ t θ q ϵ t q, ϵ t W.N(σ 2 ). 1 E(y t ) = µ. 2 γ 0 = V ar(y t ) = (1 + θ θ2 q)σ 2. 3 { (θ k + θ 1 θ k θ q k θ q )σ 2, 1 k q γ k = 0, k q MA 5 ρ k = { θk +θ 1 θ k+1 + +θ q k θ q 1+θ θ2 q, 1 k q 0, k q / 32
26 AR MA(q) AR AR AR(1) y t = c + ϕ 1 y t 1 + ϵ t, ϵ t W.N(σ 2 ) 26 / 32
27 y y y y y y c=2,phi=0.8,sigma=1 c= 2,phi=0.3,sigma = 0.5 c=0,phi= 0.3,sigma= Index Index Index c= 2,phi= 0.8,sigma=1 c=2,phi=1,sigma=1 c=2,phi=1.1,sigma= Index Index Index 27 / 32
28 MA AR AR(1) ϕ 1 < 1 MA AR c µ = E(y t ) = E(c + ϕ 1 y t 1 + ϵ t ) = c + ϕ 1 E(y t 1 ) = c + ϕ 1 µ µ = c 1 ϕ 1 MA σ 2 γ 0 = V ar(y t ) = V ar(c + ϕ 1 y t 1 + ϵ t ) = V ar(ϕ 1 y t 1 + ϵ t ) = ϕ 2 1V ar(y t 1 ) + V ar(ϵ t ) + 2Cov(y t 1, ϵ t ) = ϕ 2 1 = ϕ 2 1γ 0 + σ 2 γ 0 = σ 2 /(1 ϕ 2 1). 28 / 32
29 AR(1) k γ k = Cov(y t, y t k ) = Cov(ϕ 1 y t 1 + ϵ t, y t k ) = Cov(ϕ 1 y t 1, y t k ) + Cov(ϵ t, y t k ) = ϕ 1 γ k 1 γ 0 ρ k = ϕ 1 ρ k 1 ( ) - AR ρ 0 = 1 (AR(1) ρ k = ϕ k 1) 29 / 32
30 AR(p) p AR AR(p) y t = c + ϕ 1 y t ϕ p y t p + ϵ t, ϵ t W.N.(σ 2 ). AR(p) 1 µ = E(y t ) = c 1 ϕ 1 ϕ 2 ϕ p. 2 γ 0 = V ar(y t ) = σ 2 1 ϕ 1 ρ 1 ϕ pρ p. 3 y t AR p γ k = ϕ 1 γ k ϕ p γ k p, k 1 ρ k = ϕ 1 ρ k ϕ p ρ k p, k 1 4 AR 30 / 32
31 2.1.3 ARMA (ARMA) AR MA ARMA(p,q) y t = c + ϕ 1 y t ϕ p y t p + ϵ t + θ 1 ϵ t 1 + θ p ϵ t p, ϵ t W.N(σ 2 ). - AR MA ARMA Ex. MA AR ARMA 31 / 32
32 ARMA ARMA(p,q) 1 µ = E(y t ) = c 1 ϕ 1 ϕ 2 ϕ p. 2 q+1 p γ k = ϕ 1 γ k ϕ p γ k p, k q + 1 ρ k = ϕ 1 ρ k ϕ p ρ k p, k q MA 3 ARMA 32 / 32
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
61“ƒ/61G2 P97
σ σ φσ φ φ φ φ φ φ φ φ σ σ σ φσ φ σ φ σ σ σ φ α α α φα α α φ α φ α α α φ α α α σ α α α α α α Σα Σ α α α α α σ σ α α α α α α α α α α α α σ α σ φ σ φ σ α α Σα Σα α σ σ σ σ σ σ σ σ σ σ σ σ Σ σ σ σ σ
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)
2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ
Microsoft Word - 表紙.docx
黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
TOPIX30 2 / 37
W707 [email protected] 1 / 37 TOPIX30 2 / 37 1 2 TOPIX30 3 / 37 2000 3000 4000 5000 6000 x 1992 1993 1994 1995 1996 1997 1998 Time 4 / 37 t {X t } t i.i.d. t 5 / 37 Definition ( ) {X t } t. t 1,...,
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +
2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
01_教職員.indd
T. A. H. A. K. A. R. I. K. O. S. O. Y. O. M. K. Y. K. G. K. R. S. A. S. M. S. R. S. M. S. I. S. T. S. K.T. R. T. R. T. S. T. S. T. A. T. A. D. T. N. N. N. Y. N. S. N. S. H. R. H. W. H. T. H. K. M. K. M.
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................
nsg02-13/ky045059301600033210
φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W
δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b
23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b
seminar0220a.dvi
1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }
1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l
1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
統計学のポイント整理
.. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!
1
1 5% 4% 11% 8% 13% 12% 10% 6% 17% 6% 8% 4% 6% 6% 2% 17% 17% 12% 14% 16% 6% 37% 11% 17% 35% 2 (N=6,239) 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 1,585 1,126 950 494 345 296 242 263 191 150 131 116
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
renshumondai-kaito.dvi
3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10
JA2008
A1 1 10 vs 3 2 1 3 2 0 3 2 10 2 0 0 2 1 0 3 A2 3 11 vs 0 4 4 0 0 0 0 0 3 6 0 1 4 x 11 A3 5 4 vs 5 6 5 1 0 0 3 0 4 6 0 0 1 0 4 5 A4 7 11 vs 2 8 8 2 0 0 0 0 2 7 2 7 0 2 x 11 A5 9 5 vs 3 10 9 4 0 1 0 0 5
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30
2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0
5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())
土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)
201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50
syuryoku
248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology
Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. (2009) Response Surface Methodology, Third Edition. Chapter 7. Experimantal Designs for Fitting Response Surfaces - I. (response surface methodology)
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
