取扱説明書 [d-01H]

Size: px
Start display at page:

Download "取扱説明書 [d-01H]"

Transcription

1 d-01h

2 1

3 1

4 2

5 3

6 4

7 5

8 6

9 7

10 8

11 9

12 10

13 11

14 12

15 13

16 14

17 15

18 16

19 17

20 18

21 1 2 19

22

23 4 21

24

25

26

27 25

28 26

29

30

31 29

32

33

34

35 33

36 34

37 1 35

38 1 36

39 37

40

41

42

43 1 41

44 42

45 43

46 44

47

48

49

50

51 1 2 49

52 50

53

54

55 1 2 53

56

57

58

59 57

60

61

62 1 1 60

63

64 62

65

66

67

68 1 66

69

70 68

71 1 69

72 70

73 1 2 71

74

75

76

77

78

79

80

81

82

83

84

85

86

87 1 2 85

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105 103

106

107

108

109

110

111

112

113

114 112

115

116

117

118 116

119

120

121

122

123

124

125 123

126 124

127 125

128 126

129 127

130

131 129

132 130

133

134

135 133

136 134

137 135

138 136

139

140 138

141

142 140

143 141

144

145

IF_SUPRECUR_N29

IF_SUPRECUR_N29 ! @ # $ % ^ & * ( ) _ + )# ! a s d a s d f g h a s d @ a s d a s # a s d f g h j $ a s d f g h a s d % a s a a s a s a s d f g ^ a s a s a s & a s d f a s d f g h a s d f g a s d f g a s d a s d * s

More information

21 1113 127 23 21 12 TEL 0762251341 1 44 2 3 20 66 1 6 10 24 36 50 58 80 100 10 104 11 118 12 130 13 144 14 150 15 184 16 186 17 194 18 202 19 204 20 230 21 242 22 254 23 262 24 266 25 268 26 270 271

More information

1 1 2 5 5 3 5 6 5 8 5 9 5 9 5 10 5 10 21 11 21 22 49 52 21 53 5 54 21 57 0

1 1 2 5 5 3 5 6 5 8 5 9 5 9 5 10 5 10 21 11 21 22 49 52 21 53 5 54 21 57 0 1 1 2 5 5 3 5 6 5 8 5 9 5 9 5 10 5 10 21 11 21 22 49 52 21 53 5 54 21 57 0 A 4 K 3 2 5 1 3 1 2 K 2 2 5 1 YAKIMEN YAKIMEN 2 1 3 4 5 DH 3 T JOYFIT H2 GG 4 5 5 1 142km/h 2.298 2 12 8 3 1 3 100 6 1 4 2 5 5

More information

untitled

untitled 3sweb ASP & 2009/5/18 DN01 _1 DN02)_1 URL Web Favicon DN03 _1 Web Favicon DN04)_1 ( ) DN05 _1 EXCEL DN06)_1 EXCEL DN07 _1 URL DN08)_1 DN09 _1 ( ) (DN10)_1 ( ) DN11 _1 ( ) (DN12)_1 ( ) DN13 _1 (DN14)_1

More information

1 4 2 (1) (B4:B6) (2) (B12:B14) (3) 1 (D4:H4) D5:H243 (4) 240 20 (B8:B10) (5) 240 (B8) 0 1

1 4 2 (1) (B4:B6) (2) (B12:B14) (3) 1 (D4:H4) D5:H243 (4) 240 20 (B8:B10) (5) 240 (B8) 0 1 4 1 4 (1) (2) (3) (4) 1 4 2 (1) (B4:B6) (2) (B12:B14) (3) 1 (D4:H4) D5:H243 (4) 240 20 (B8:B10) (5) 240 (B8) 0 1 4 3 2 2.1 2 Excel 2 (A1:A14 D3:H3 B4,B5,B6) B5 0.035 4 4 2.2 3 1 1 B12: =B5+1 B13: =B12

More information

16 4 1 2003 JASS5 1 16 4 1 2 16 4 1 1999 90 90 JASS5RC 180 135 90 RC -1 (D) JASS5 L2 90 2/3 2030-1 JASS5 JASS5 JASS5 JASS5 JASS5 JASS5 90 JASS5 RC RC JASS5 JASS5 JASS5 190 RC JASS5 2 JASS5 (L22/3) 3 (2)

More information

Annual Report 2015 アリアンツ生命保険の現状

Annual Report 2015 アリアンツ生命保険の現状 Annual Report 215 [21441215331] Annual Report 215 Content 1 2 214 3 4 214 6 6 1 13 14 5 17 18 32 52 56 64 Annual Report 215 189125 78,5 284 2157 1 Annual Report 215 2153 URL Allianz Life Insurance Japan

More information

取扱説明書 [d-02H]

取扱説明書 [d-02H] d-02h 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 19 3 1 2 4 20 21 1 2 3 4 22 1 2 1 1 2 1 23 1 2 24 25 1 1 2 26 1 27 1 2 3 28 1 2 29 1 2 3 30 1 2 3 1 2 3 4 5 31 1 2 3 4 32 33 34 1 35 1 36 37 1

More information

01.eps

01.eps 02 UR 151 30 40 50 60 100 013 03 30 DK 4 1.8 2.5 100m NS 3DK 001 6.2 900 31 1 2DK 04 30 001. 002. 003. 004. 005. 006. 007. 008. 009. 010. 011. 012. 013. 1955-1964 002 0.6 120 31 JR 10 2 3 NS 1.3 240 31

More information

DID C2040 DID C2042 DID C2050 DID C2052 DID C2060H DID C2062H DID C2080H DID C2082H DID C2100H DID C2102H DID C2120H DID C2122H DID C2160H DID C2162H

DID C2040 DID C2042 DID C2050 DID C2052 DID C2060H DID C2062H DID C2080H DID C2082H DID C2100H DID C2102H DID C2120H DID C2122H DID C2160H DID C2162H DID C2040 DID C2042 DID C2050 DID C2052 DID C2060H DID C2062H DID C2080H DID C2082H DID C2100H DID C2102H DID C2120H DID C2122H DID C2160H DID C2162H 10 80 10 120 LX LX LX LX LX LX C**UR(B) C**UR(B) C**UR(B)

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

ロシア経済、光と陰

ロシア経済、光と陰 2004/06/14 9 25 EU 8 95 EU 19952002 GDP 3.6 28.0% EU EU 1.3 11.2 1 2002 0.8 EU 57 1989 EU EU EU 2 PHARE ISPA SAPARD 20042006 408 1973 EC 90 1 2004/06/14 9 25 WIIW 1 1995 2002 80 EU 16 EU 6.5 5 15 20 1,120

More information

untitled

untitled ln1/v0) 85 1000h 5.5V 0.047F0.33F Series DXJ 85 1000h 5.5V 0.047F1.0F Series DH 3.3V 0.07F 0.2F Series DSK 4.86.81.4 t mm 70 1000h 5.5V 0.047F1.0F Series DX 2.5V 0.22F Series DS 3.3V 0.22F Series DSK 2.5V

More information

26 1 24 15 10 1 18 4 2 21 5 3 22 2 4 5 26 1 24 14 15 10 1 2 2 2 3 2 3.1...................................... 2 3.2.................................... 2 3.3............................. 3 3.4....................................

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx ver. 1.0 18 6 20 F = f m r = F r = 0 F = 0 X = Y = Z = 0 (1 δr = (δx, δy, δz F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2 δr (2 1 (1 (2 n (X δx + Y δy + Z δz = 0 (3 1 F F = (X, Y, Z δr = (δx, δy, δz S δr δw

More information

27 9 16 15 10 1 18 4 2 21 5 3 22 2 4 26 1 5 6 27 9 16 14 15 10 1 2 2 2 3 2 3.1................................... 2 3.2...................................... 4 3.3....................................

More information

untitled

untitled Q1 Q1 1.1 1.1.1 db(a) 50 [ ] 45 [ ] 45 [ ] 50 40 [ ] 45 40 [ ] 45 35 [ ] 40 [ ] 40 [ ] 35 32 55 [ ] 40 [ ] 50 [ ] 55 35 [ ] 40 45 [ ] 50 30 [ ] 35 [ ] 45 [ ] 30 60 [ ] 50 [ ] 60 45 [ ] 50 35 [ ] 45 [ ]

More information

untitled

untitled [email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

untitled

untitled 1 2 3 4 5 a A b A A DO DH df 90 90 190 190 850 850 1180 a 0.15 0.0008df 0.08 0.76 1180 b 0.25 0.0009df 0.08 1.14 6 B RS-CR1RS-CR3 RS-CV1 RS-CV2 RS-CV3 1 2 3 L H B RS-CR1 RS15 50 16.4 20 RS-CR2 RS25 50

More information

表紙

表紙 Happy with you. 01 CONTENTS P.05 P.10 P.11 P.19 P.20 P.24 P.25 P.27 P.27 P.27 P.28 P.29 P.31 P.33 02 03 04 Beauty Health Relaxation 05 1 2 3 4 PBD-414KCM 182,700 174,000 06 07 08 PBD-414KCM 182,700 174,000

More information

ダイドレカタログ_P , indd

ダイドレカタログ_P , indd OMIS-D 127 OMIS-DS 128 OMIS-1 127 OMIS-1S 128 OMIS-2 127 OMIS-2S 128 OMIS-DH 129 OMIR-D 132 OF-SP-DS 131 OF-SP-DC 130 OF-SP-1S 131 OF-SP-1C 130 OF-SP-2S 131 OF-SP-2C 130 OF-SP-1M 132 OF-SP-1H 132 DN-1

More information

_ H...eps

_ H...eps 88 89 r r r r r r 90 r r r r 91 92 93 r 94 95 0.5 1.25 2 5.5 3H-2622 3H-2216 3H-1614 3H-1210N 3102 3112 3122 3132N 3101 3111 3121 3131N 0.5 3V-2622N 3201N 3202N 3301N 3302N 1.25 3V-2216N 3211N 3212N 3311N

More information

2009 June 8 toki/thermodynamics.pdf ) 1

2009 June 8   toki/thermodynamics.pdf ) 1 2009 June 8 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 1 6 10 23 ) 1 H download 2 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 2 2.1 [1] [2] [3] Q = mc (1) C gr Q C = 1cal/gr deg

More information

XAAAA-H pdf

XAAAA-H pdf Sani Safe Bathroom Door Series Door Sliding Door Folding Door B 19861990 19901997 19951997 19861997 19962001 19962001 2000 2000 ND-3031 ND-32333435 ND-36373839 XD-NS ND-SND-SR ND-CBND-SB 2ND-S2ND-SB2ND-CB

More information

untitled

untitled - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - - 30 -

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

CAT. No.3162c 2011 G-3 P371-P402

CAT. No.3162c 2011 G-3 P371-P402 WBK**-01* WBK**R-11 WBK**S-01* 625 B377 WBK**-11* 46 RMA RMS B383 625 B381 625 B379 WBK**SF-01 1215 VFA B384 WBK**DF*-31 1740 B387 1 2 B371 B372 3 WBK 08 S - 01 A 1 WBK 25 DF - 31 B373 B374 6 B375 B376

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

数学Ⅲ立体アプローチ.pdf

数学Ⅲ立体アプローチ.pdf Ⅲ Ⅲ DOLOR SET AMET . cos x cosx = cos x cosx = (cosx + )(cosx ) = cosx = cosx = 4. x cos x cosx =. x y = cosx y = cosx. x =,x = ( y = cosx y = cosx. x V y = cosx y = sinx 6 5 6 - ( cosx cosx ) d x = [

More information

Tooling by DIJET ミーリング&ドリリング編 Vol.6

Tooling by DIJET ミーリング&ドリリング編 Vol.6 69 Dc Lf d d a b R Db SKS-06RS-0 SKS-00RS-0 SKS-RS-0 SKS-RS-0 SKS-6RS-0 SKS-06RS-0- SKS-00RS-0-7 SKS-RS-0- SKS-RS-0-0 SKS-6RS-0-0 kg Fig. 7 6 6 7 7 7 6 0 6 0 6 6 0 6. 7 9 9..7.7.9 9 0... 6. 6. 0 70 70

More information

SK-3500/3502

SK-3500/3502 MODEL SK-3500 SK-3502 SK-3500/3502 1. 2 2. 2 3. 3 3-1. 3 3-2. 4 4. 6 4-1. 6 4-2. 8 4-3. 9 5. 9 6. 13 6-1. 13 6-2. 15 6-3. 18 6-4. 20 7. 22 7-1. 22 7-2. 24 7-3. 25 8. 25 9. 26 10. 27 10-1. 27 10-2. 28 J-1

More information

B-31

B-31 B-31 B-32 S0 B-33 B-34 B-35 Fw Fw Fw AD B=Fw A B A B-36 Fw Fw Fw Fw D Fw D Fw D Fw D T H D DH de dnom S t S t t S E E E DH dnom de E E dnom S DH de t dnom H T D Li T Li LiDTDHDTH T mlimdmtmh Li D T H H

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: [email protected] 1 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633 1941. E.J.W.Verwey

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: [email protected] 1 2 1 mol/l KCl 3 4 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

More Safety Drive 6 P.06 P.12 P.06 P.07 P.13 P.13 & P.07 P.14 P.08 P.14 P.08 P.15 / P.09 P.15 P.09 P.16 DPF SCR P.10 3 P.16 P.10 3 DPF P.17 P.11 3 P.1

More Safety Drive 6 P.06 P.12 P.06 P.07 P.13 P.13 & P.07 P.14 P.08 P.14 P.08 P.15 / P.09 P.15 P.09 P.16 DPF SCR P.10 3 P.16 P.10 3 DPF P.17 P.11 3 P.1 MAINTENANCE GUIDE BOOK & BUS EDITION 2017 108TBAST17A 212-0058 More Safety Drive 6 P.06 P.12 P.06 P.07 P.13 P.13 & P.07 P.14 P.08 P.14 P.08 P.15 / P.09 P.15 P.09 P.16 DPF SCR P.10 3 P.16 P.10 3 DPF P.17

More information

k_2

k_2 FA TD V 0570-063011/03-3346-3011 0120-3030-17 01 02 04 22 28 44 48 49 : mm P.04 FATD FA TD P.22 V P.44 1 2 1. 2. 3. 4. 4 5 6 7 6 7 KOFB KOFV KOTV KOTT KOW KOB O F V K FAX TDX GAX mm 8 9 8 9 RC mm mm mm

More information

1

1 I II II 1 dw = pd = 0 1 U = Q (4.10) 1K (heat capacity) (mole heat capacity) ( dq / d ) = ( du d C = / ) (4.11) du = C d U = C d (4.1) 1 1 du = dq + dw dw = pd dq = du + pd (4.13) p dq = d( U + p ) p (4.14)

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

[ , , ィ

[ , , ィ 13040509010708 1999 03. 070503 169, 02 11 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 030107080302060405 タ05 縺04020703 05000409050600020808000707 05.06. 040508010904 縺01080507 0605080209050504

More information

GE5000シリーズ ユーザーズマニュアル設定メニュー編

GE5000シリーズ ユーザーズマニュアル設定メニュー編 T-984PD-4 MA1506-G 2015 6 15 7 ...2...3...4...4...4...5...6...10...10...12...21...24...33...37...41...41 1...42...42 2...51 3...55...55 2 1 2 3 http://casio.jp/ppr/ 4 54 6 7PC-PR201H 201H 8ESC/P ESC/Page

More information

MO 2 E 2 POM -248/16 ev. 1.3_2 L D WP V GND 2* D IN LOD / W D OU OMP LOD 3 Min. yp. Max. V IN Y V IH V = V V = V V IL V = V 2 V =

MO 2 E 2 POM -248/16 ev. 1.3_2 L D WP V GND 2* D IN LOD / W D OU OMP LOD 3 Min. yp. Max. V IN Y V IH V = V V = V V IL V = V 2 V = ev. 1.3_2 MO 2 E 2 POM -248/16 8-Pin DIP ( DP8-DP8-E) 8-Pin OP ( FJ8-DFJ8-E) :µ Max. (V =5.5 V) :.8 m Max. (V =5.5 V, f=4khz).4 m Max. (V =4.5 V, f=1khz) :2.5 5.5 V :1.8 5.5 V 16 (-248, -2416) GN 1 2 8-Pin

More information

vol.7-ミーリング編

vol.7-ミーリング編 Tooling by VN-DTD VN-DRD 9 VN-DTD 2 VN-DVT EZD VN-DFD DIA DIA DIA DIA DIA ~HRC ~HRC EZDM Tooling by DIJET EZSM SCD-M 9 SCD-MS 9 SCD-KMS 9 9 TEZD-MS TEZD-KMS SCD-KMS-2D 9 FDM Tooling by DIJET DZ-M-SFDS

More information

TR Ver 1.33 TDR-OTH-ANTRelay-133

TR Ver 1.33 TDR-OTH-ANTRelay-133 TR3 2012 4 5 Ver 1.33 TDR-OTH-ANTRelay-133 TDR-OTH-ANTRelay-133 ... 1... 1... 2... 2... 3... 3... 4... 6... 6... 8... 8... 10... 12... 12... 14... 16... 16... 18... 20... 20... 22... 24... 24... 26...

More information

Microsoft Word - J_CW330-ControlCommand_V doc

Microsoft Word - J_CW330-ControlCommand_V doc S 6 制御コマンド一覧表 品番 PT-CW330 / CW331R / CW240 PT-CX300 / CX301R PT-LW321 / LX351 PT-TW331R / TX301R CONTENTS 1. 基本フォーマット... 2 2. 基本制御コマンド... 3 2.1. Power ON (LAMP ON)... 3 2.2. Power OFF (STANDBY)... 3 2.3.

More information