Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1

Size: px
Start display at page:

Download "Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1"

Transcription

1 Fortran90/ Fortran 2-1 Hello! 1 program example2_01! end program 2! first test program ( ) 3 implicit none! 4 5 write(*,*) "Hello!"! write Hello! 6 7 stop! 8 end program example2_01 1 program 1! Plato3 Terapad NotePad 1. (statement) Fortran 5 write Hello! 1 ( ) Plato3 Gnome editor example2_1 (2 ) "Hello!" Fortran ( ) 2. (comment) Fortran

2 Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) & *3 & & & write(*,*) "AAAAAAA& &BBBBBB" *1 Fortran *2 Windows SJIS 2 Fedora utf8 3 *3-11 -

3 Fortran90/95 write(*,*) "AAAAAAABBBBBB" & 39 1 ; ( ) 2 *4 a = 0 ; b = 0 4. Fortran Fortran (i) 26 ( ) 0 9 _ 63 Fortran write Write * 5 (ii) + - * / = ( )., : $! " % & ; > <? 21 { 2-1 example2_1 Fortran OS (Fortran (3) ) 1 Fortran (1) a-b (2) CO2 (3) _stdout (4) a.out (5) 2d (6) o_1 (7) ( ) (2) (6) *4 *5 Windows Linux

4 Fortran90/ program example2_02 2 implicit none 3 4 write(*,*) stop 7 end program example2_ * "Hello" * (operator) + (operand) ( ) (expression) (numeric experssion) "Hello" (character expression) ( ) *6 FORTRAN77 *7-13 -

5 Fortran90/ ( ) ( ) 4 2 ( ) 4 2 ( ) 4/2 ( ) 4 2 Fortran 5 (i) + * 8 (ii) - ( ) (iii) * (iv) / * 9 (v) ** 1 program example2_03 2 implicit none 3 4 write(*,*) write(*,*) write(*,*) 4*2 7 write(*,*) 4/2 8 write(*,*) 4** stop 11 end program example2_ (1) (2) 2 4 (3) 1 2 (4) 3 5 (5) 4 23 (6) 2 32 (1) Fortran 4 + 2*3 ( ) * 3 4+2*3 4+2 * 3 (2) 24/2*4 24/2/4 24/(2*4) *8 *9-14 -

6 Fortran90/95 (3) (4) * - -3*-5 *- * 10 *(-5) 3 (5) 4*2**3 4*(2**3) (6) 2**3**2 (2 3 ) 2 = 8 2 = 64 2 (32) = 2 9 = 512 2**(3**2) (2**3)**2 Appendix 1 1 program example2_04 2 implicit none 3 4 write(*,*) 4 + 2*3 5 write(*,*) 24/(2*4) 6 write(*,*) write(*,*) (-3)*(-5) 8 write(*,*) 4*(2**3) 9 write(*,*) 2**(3**2) stop 12 end program example2_ Fortran 6 (1) (1 + 3) (2 4) (2) (3) (1) (1+3)*(2-4) (2) 6/(1+2) (3) (2**3)*(3**2) *10 (-5)

7 Fortran90/ ( ) 7 3 (1) (2) (3) Fortran 1,2,3, 0, 1, 2, (2 16 ) (integer data type) (real data type) * * ( ) e + 1.2e3 -.2e-2 1e0-2e-3 e 10 e 1e = e = * 13 *11 * < = ( ) < = *13 e 1 e3-16 -

8 Fortran90/95 1 program example2_05 2 implicit none 3 4 write(*,*) 7/3 5 write(*,*) 7-7/3*3 6 write(*,*) 7.0/ stop 9 end program example2_ Fortran (-7)/(-3) 2 7/(-3) 2 (-7)/ * Fortran (1) 1.5*4/3 (2) 4/3*1.5 ( ) * 15 Fortran (1) 1.5* /3 2.0 (2) 4/3 1 1* ( 1.5*4.0/ /3.0*1.5 ) *14 *

9 Fortran90/ "Hello" (character data type) 5 5 write 1 program example2_07 2 implicit none 3 4 write(*,*) 5 5 write(*,*) "5" 6 7 stop 8 end program example2_ (character string) 1 (character expression) " " * 16 ( ) * 17 // 2 "ab"// cde "abcde" 1 3 Fortran (1) (2) (1) (4.0*5.0)/(3.0*2.0) (2) 27.0**(1.0/3.0) 3.0 *16 Ruby " *

10 Fortran90/ x x x 2 x 3 x 4 x = **2 2.0**3 2.0**4 x (variable) ( ) Fortran (i) (ii) (iii) program example2_ implicit none 4 real :: x! 5 6 x = 2.0! 7 write(*,*) x 8 write(*,*) x**2 9 write(*,*) x**3 10 write(*,*) x** stop 13 end program example2_08 x = (type declaration statement) (declaration statement) x 1 * 18 :: (type specifier) :: ( ) integer ( ) real ( ) character(len=nn) *

11 Fortran90/95 nn ( ) len= character(12) * 19 Fortran ( 31 ) * 20, real :: x real :: y 2 real :: x, y x 7 write * x 2.0 (assignment statement) = = x+1=y <- * real :: x = 2.0 (initialization expression) :: =, =... g c π *19 *20 ( ) *21 FORTRAN77 *22 ALGOL PASCAL = := =

12 Fortran90/95 real, parameter :: pai = parameter pai parameter (attibute) parameter (named constant), parameter :: =, = =... pai integer, parameter :: n = 10 integer, parameter :: n2 = n * (1) a b h Fortran (2) a = 1 b = 2 h = 1.5 * x y xy xy program example2_09 2 implicit none 3 real :: a = 1.0, b = 2.0, h = 1.5! 4 5 write(*,*) (a+b)*h/ stop 8 end program example2_ (1) x (2) k

13 Fortran90/95 (...) (1) (6 7 ) (2) program example2_10 2 implicit none 3 real :: x 4 integer :: k 5 6 x = ! 7 write(*,*) x 8 k = write(*,*) k! stop 12 end program example2_10 4 Fortran (1) x(y + z) (2) a + b 2 (3) 1 t + 1 (1) x*(y+z) (2) a + b/2.0 (3) 1.0/(t+1.0)

14 Fortran90/ read write x 1 x 2 x 3 x 4 1 read read(*,*) 1, 2, 3... write write(*,*) 1, 2, program example2_11 2 implicit none 3 real :: x1, x2, x3, x4 4 5 read(*,*) x1, x2, x3, x4! 6 write(*,*) x1, x2, x3, x4! 7 write(*,*) "sum=", x1 + x2 + x3 + x4 8 9 stop 10 end program example2_11 read write write(*,*) "y=", y read write (*,*), 1 * (i) read(*,.. * PC (ii) write(*,.. * PC * 23 read write, 2 * (list-directed input / output) Fortran (*,*) * * *

15 Fortran90/ (i) (ii) (iii) (iv) (v) (separator) Enter 1 1, ,2.0, 3.0, 4.0 (i) read Fortran * 24 (ii) ! * 25 (i) 1 ( ) (ii) cntl-c / (i), / " (ii) " " (iii) 1 "ab cd""ef" ab cd"ef *24 Fortran *25!

16 Fortran90/95 3. (i) 1 (ii) 1 (iii) 1 (i) 1 (ii) 1 (iii) 1 4. * 26 ctrl-c * 27 (i) xxx.txt (ii) abc.f90 read(*,*) var1, var2,... (iii) 1 (iv) (v) (Linux )./a.out < xxx.txt (Windows ) abc.exe < xxx.txt xxx.txt (i) def.f90 write(*,*) expression1, expression2,... (ii) *26 Fortran OS * open

17 Fortran90/95 (iii) (iv) (Linux )./a.out > zzz.txt (Windows ) def.exe > zzz.txt zzz.txt write(*,*) "x " x zzz.txt 5 program main implicit none integer :: i1, i2, i3, i4 read(*,*) i1 read(*,*) i2, i3 read(*,*) i4 write(*,*) i1, i2, i3, i4 stop end program main 1, 2 3 4, 5 6, 7 i1,i2,i3,i4 i1 1 i2 3 i3 4 i

18 Fortran90/ f (x) (function) (i) (intrinsic function) Fortran * 28 (ii) (i) Fortran f (x) f x (argument) (ii) ( 1[, 2][, 3],...) (iii) (iv) x (1) x (2) x (3) x (4) x Fortran x < x = 2.5 int(x) x x aint(x) nint(x) x x anint(x) floor(x) x x ceiling(x) x x *28 [3][4][5][8]

19 Fortran90/ program example2_11 2 implicit none 3 real :: x 4 5 x = write(*,*) int(x) 7 write(*,*) nint(x) 8 write(*,*) floor(x) 9 write(*,*) ceiling(x) stop 12 end program example2_11 real(x) x x (numeric function) 5 abs(x) x x mod(n,m) n m n m n max(x1,x2[,x3]...) x1,x2,... x1,x2,... 2 min(x1,x2[,x3]...) x1,x2,... x1,x2,... 2 aimag( ) cmplx( ) conjg( ) dble( ) dim( ) dprod( ) modulo( )) sign( ) x y (1) x (2) e x y (3) log(x + y) (4) sinx (5) arctanx Fortran x = 1.0 y =

20 Fortran90/95 Fortan (mathematical function) * 29 sqrt(x) x x x < 0 exp(x) e x log(x) e log e x x < 0 log10(x) 10 log 10 x x < 0 sin(x) sinx x cos(x) cosx x tan(x) tanx x asin(x) arcsinx x < = 1 π/2 < = < = π/2 acos(x) arccosx x < = 1 0 < = < = π atan(x) arctanx π/2 < < π/2 atan2(y,x) (x,y) x x π < < = π x y 0 sinh(x) sinhx = ex e x 2 cosh(x) coshx = ex + e x 2 tanh(x) tanhx = ex e x e x + e x program example2_12 2 implicit none 3 real :: x, y 4 5 x = y = write(*,*) sqrt(x*x + 1.0) 8 write(*,*) exp(x-y) 9 write(*,*) log(x+y) 10 write(*,*) sin(x) 11 write(*,*) atan(x) 12 *29 sqrt exp log sin cos

21 Fortran90/95 13 stop 14 end program example2_12 4. (i) ( ) ( ) sqrt(abs(-y)) (ii) ( ) real :: sin (iii) sin cos tan π 6 Fortran a + 1 (1) a = 2 log e a 1 (2) t = π 4 sin t + cos 2t (3) (x,y) = ( 1 2, 3 2 ) (1) log(abs((a+1.0)/(a-1.0)))= (2) sin(t) + cos(2.0*t)= (3) sqrt(x*x+y*y)= atan2(y,x)=

22 Fortran90/ Fortran x = 1 (1) x 3 + 2x 2 + 2x + 1 (2) 1 + cos2x (3) 1 2π e x2 /2 r 3 4 π r3 4π r x (1) (h) (m) (s) (t) 0 < = h < 24 0 < = m < 60 0 < = s < 60 (2) (t) 0 < = t < % A(1.0,1.0) B(5.0,3.0) C(4.0,5.0) 1 (x,y) 1.0, , ,5.0 (1) a,b,c a= b= c= (2) S = s(s a)(s b)(s c) s = a + b + c 2 ABC S ( ) (0.0,0.0) (3.0,0.0) (0.0,4.0)

untitled

untitled R R R 2 R 2 R R R R R R R R R R 3 R R 4 R C JAVA 5 R EXCEL GUI 6 R SAS SPSS 7 R 8 R EXCEL GUI R GUI RR Commander 9 R Auckland Ross Ihaka Robert Gentleman Fred Hutchinson Cancer Research Center AT&T Lucent

More information

情報活用資料-03-20150604

情報活用資料-03-20150604 cp hello.f90 echo.f90 mv echo.f90 echofile.f90 cp echofile.f90 echo.f90 7 8 9 Echo key input program echo character(80):: A read (5,*) A write (6,*) A stop end program echo chracter read 10 Echo key input

More information

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x =

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x = 1 1 Octave GNU Octave Matlab John W. Eaton 1992 2.0.16 2.1.35 Octave Matlab gnuplot Matlab Octave MATLAB [1] Octave [1] 2.7 Octave Matlab Octave Octave 2.1.35 2.5 2.0.16 Octave 1.1 Octave octave Octave

More information

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

1 1 Gnuplot gnuplot   Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

di-problem.dvi

di-problem.dvi 005/05/05 by. I : : : : : : : : : : : : : : : : : : : : : : : : :. II : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. III : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : :

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

n 第1章 章立ての部分は、書式(PC入門大見出し)を使います

n 第1章 章立ての部分は、書式(PC入門大見出し)を使います FORTRAN FORTRAN FORTRAN ) DO DO IF IF FORTRAN FORTRAN(FORmula TRANslator)1956 IBM FORTRAN IV FORTRAN77 Fortran90 FORTRAN77 FORTRAN FORTARN IF, DO C UNIX FORTRAN PASCAL COBOL PL/I BASIC Lisp PROLOG Lisp

More information

1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co

1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co gnuplot 8 gnuplot 1 1.1 gnuplot gnuplot 2D 3D gnuplot ( ) gnuplot UNIX Windows Machintosh Excel gnuplot C 1.2 web gnuplot $ gnuplot gnuplot gnuplot> exit 1 1.3 2 gnuplot> set samples 1024 1024 gnuplot>

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel http://yktlab.cis.k.hosei.ac.jp/wiki/ 1(Plot) f x x x 1 1 x x ( )[( 1)_, ( )_, ( 3)_,...]=( ) Plot Plot f x, x, 5, 3 15 10 5 Plot[( ), {( ), ( ), ( )}] D g x x 3 x 3 Plot f x, g x, x, 10, 8 00 100 10 5

More information

Microsoft Word - 資料 (テイラー級数と数値積分).docx

Microsoft Word - 資料 (テイラー級数と数値積分).docx δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

num2.dvi

num2.dvi [email protected] http://kanenko.a.la9.jp/ 16 32...... h 0 h = ε () 0 ( ) 0 1 IEEE754 (ieee754.c Kerosoft Ltd.!) 1 2 : OS! : WindowsXP ( ) : X Window xcalc.. (,.) C double 10,??? 3 :, ( ) : BASIC,

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 計算機実習 Ⅰ FORTRAN 担当 2018.05.29 本日の課題 プログラムの基本ルールを理解し 以下が含まれるプログラムを作成する (1) 文法の基礎 ( フローチャートなど ) (2) 変数宣言 (3) 入出力 (4) 四則演算 (5) 組込関数 (6) 判定文 (7) リダイレクション PROGRAM MAIN INTEGER I, J, K REAL A, B, C CHARACTER

More information

untitled

untitled Fortran90 ( ) 17 12 29 1 Fortran90 Fortran90 FORTRAN77 Fortran90 1 Fortran90 module 1.1 Windows Windows UNIX Cygwin (http://www.cygwin.com) C\: Install Cygwin f77 emacs latex ps2eps dvips Fortran90 Intel

More information

Microsoft Word - 03-数値計算の基礎.docx

Microsoft Word - 03-数値計算の基礎.docx δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (

More information

解きながら学ぶC++入門編

解きながら学ぶC++入門編 第 1 章 画面 出力 入力 2 問題 1-1 C++ List 1-1p.4 C++ // cout

More information

解きながら学ぶC言語

解きながら学ぶC言語 printf 2-5 37 52 537 52 printf("%d\n", 5 + 37); 5370 source program source file.c ex00.c 0 comment %d d 0 decimal -2 -p.6 3-2 5 37 5 37-22 537 537-22 printf("537%d\n", 5-37); function function call ( )argument,

More information

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231 0 0.1 ANSI-C 0.2 web http://www1.doshisha.ac.jp/ kibuki/programming/resume p.html 0.3 2012 1 9/28 0 [ 01] 2 10/5 1 C 2 3 10/12 10 1 2 [ 02] 4 10/19 3 5 10/26 3 [ 03] 6 11/2 3 [ 04] 7 11/9 8 11/16 4 9 11/30

More information

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5: BASIC 20 4 10 0 N88 Basic 1 0.0 N88 Basic..................................... 1 0.1............................................... 3 1 4 2 5 3 6 4 7 5 10 6 13 7 14 0 N88 Basic 0.0 N88 Basic 0.1: N88Basic

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x gnuplot gnuplot y = x + x y = sin x.8 sin(x) 8 7 6 x*x*x+*x*x.6.. -. -. -.6 -.8 - - - - - - - -. - -. - -.. gnuplot gnuplot> set xrange[-.:.] gnuplot> plot x**+*x** y = x x gnuolot> reset gnuplot> plot

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

45 VBA Fortran, Pascal, C Windows OS Excel VBA Visual Basic Excel VBA VBA Visual Basic For Application Microsoft Office Office Excel VBA VBA Excel Acc

45 VBA Fortran, Pascal, C Windows OS Excel VBA Visual Basic Excel VBA VBA Visual Basic For Application Microsoft Office Office Excel VBA VBA Excel Acc \n Title 文 系 学 生 のための VBA プログラミング 教 育 についての 考 察 Author(s) 五 月 女, 仁 子 ; Soutome, Hiroko Citation 商 経 論 叢, 46(1): 45-60 Date 2010-10-31 Type Departmental Bulletin Paper Rights publisher KANAGAWA University

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

gnuplot.dvi

gnuplot.dvi gnuplot gnuplot 1 gnuplot exit 2 10 10 2.1 2 plot x plot sin(x) plot [-20:20] sin(x) plot [-20:20][0.5:1] sin(x), x, cos(x) + - * / ** 5 ** plot 2**x y =2 x sin(x) cos(x) exp(x) e x abs(x) log(x) log10(x)

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

fx-3650P_fx-3950P_J

fx-3650P_fx-3950P_J SA1109-E J fx-3650p fx-3950p http://edu.casio.jp RCA500002-001V04 AB2 Mode

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

情報活用資料

情報活用資料 y = Asin 2πt T t t = t i i 1 n+1 i i+1 Δt t t i = Δt i 1 ( ) y i = Asin 2πt i T 21 (x, y) t ( ) x = Asin 2πmt y = Asin( 2πnt + δ ) m, n δ (x, y) m, n 22 L A x y A L x 23 ls -l gnuplot gnuplot> plot "sine.dat"

More information

kiso2-06.key

kiso2-06.key 座席指定があります Linux を起動して下さい 第6回 計算機基礎実習II 計算機基礎実習II 2018 のウェブページか ら 以下の課題に自力で取り組んで下さい 第5回の復習課題(rev05) 第6回の基本課題(base06) 第5回課題の回答例 ex05-2.c 1. キーボードから整数値 a を入力すると a*a*a の値を出力することを繰り返すプログラムを作成しなさい 2. ただし 入力された

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 A p./29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x) + C f(x) A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x)

More information

卒論 提出用ファイル.doc

卒論 提出用ファイル.doc 11 13 1LT99097W (i) (ii) 0. 0....1 1....3 1.1....3 1.2....4 2....7 2.1....7 2.2....8 2.2.1....8 2.2.2....9 2.2.3.... 10 2.3.... 12 3.... 15 Appendix... 17 1.... 17 2.... 19 3.... 20... 22 (1) a. b. c.

More information

新版 明解C++入門編

新版 明解C++入門編 第 1 章画面 出力 入力 C++ C++ C++ C++ C++ C++ C++ C++ #include using C++ C++ C++ main C++ C++ C++ int double char C++ C++ C++ string C++ C++ C++ 21 1-1 C++ 歴史 C++ C++ 歴史 CC with classes Fig.1-1 C C++ Simula 67

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information