HPhi_exercise.key
|
|
|
- つねたけ いんそん
- 8 years ago
- Views:
Transcription
1 laptop PC (TPQ ) OK
2
3 1: S =1/2 Heisenbergdimer 2 S =1/2 Heisenberg dimer model H = S 1 S 2 S tot =0 E = 3/4 S tot =1 E =1/4 HPhi 2 2/17
4 1: S =1/2 Heisenbergdimer SpinHalf.def 1 model = "SpinGC" 2 lattice = "chain lattice" 3 method = "FullDiag" 4 2S = 1 5 L = 2 6 J = 0.5 HPhi Standard SpinGC GC Grand Canonical J = > HPhi -s SpinHalf.def, S=1, S=3/2 (2S=2 ) Emin=-S(S+1), Emax=S^2 3/17
5 2: S =1/2 Heisenbergchain StdFace.def 1 model = "Spin" 2 lattice = "chain lattice" 3 method = "Lanczos" 4 2S = 1 5 2Sz = 0 6 J = L = 12 Spin Canonical 2Sz z 2 Lanczos 1 > HPhi -s StdFace.def 6/17
6 2-A: S =1/2 Heisenbergchain S = 1/2 Heisenberg chain H = L i=1 S i S i+1 S L+1 = S 1 Luttinger 1/L 3 HPhi 3 5/17
7 2: S =1/2 Heisenbergchain StdFace.def 1 model = "Spin" 2 lattice = "chain lattice" 3 method = "Lanczos" 4 2S = 1 5 2Sz = 0 6 J = L = 12 Spin Canonical 2Sz z 2 Lanczos 1 > HPhi -s StdFace.def 6/17
8 2: S =1/2 Heisenbergchain output/zvo_lanczos_step.dat 4 1 > tail -n 3 output/zvo_lanczos_step.dat 2 stp= stp= stp= Lanczos step 2 4 7/17
9 2: S =1/2 Heisenbergchain tail awk 5 1 > tail -n 1 output/zvo_lanczos_step.dat awk {print $3-$2} L PC L = 18, 20 L 5 8/17
10 2: S =1/2 Heisenbergchain (StdFace.common) 1 model = "Spin" 2 lattice = "chain lattice" 3 method = "Lanczos" 4 2S = 1 5 2Sz = 0 6 J = 1.0 L 1 rm -f res.dat 2 for L in ; do 3 cp StdFace.common StdFace.def 4 echo "L=$L" >> StdFace.def 5 HPhi -s StdFace.def 6 gap=$((tail -n1 \ 7 output/zvo_lanczos_step.dat \ 8 awk {print $3-$2} ) 9 echo $L $gap >> res.dat 10 done 9/17
11 2: S =1/2 Heisenbergchain S = 1/2 Heisenberg chain log L \Delta a + b*x Lanczos /L S =1/2 XY chain (J z =0, J x =1.0) S=1 Heisenberg chain (Haldane gap) [input file 2S=2 ] 10 / 17
12
13 H = J 1 X S i S j + J 2 X hi,ji hhi,jii S i S j m s (k 0 ) m s (k x ) T S m s T, S Neel AFM QSL Stripe AFM J 2 /J
14 H = J 1 X S i S j + J 2 X hi,ji hhi,jii S i S j L =4 W = 4 model = "Spin" method = "Lanczos" lattice = "square lattice" J = 2.0 J = 1.0 2Sz = 0
15 J1-J2 Heisenberg model, Ns=4 4, J1=2.0 E. Dagotto and A. Moreo, PRB (R) 39, 4744 (1989) TABLE I. Ground-state energy (Ep) and first excited-state energy (E~) per site (both singlets with zero momentum) of the 2D Heisenberg model with frustration as a function of J2 on a 4X41attice. The error is in the last digit Ep
16 X X X H = J x Si x Sj x J y S y i Sy j J z Si z Sj z x bond y bond z bond gapless J z =1, J x = J y = A z gapped J y J x =1, =1, = =0 J z A x B A y J y J x = =0 J z Annals of Physics 321, (2016)
17 H = J x X x bond S x i S x j J y X y bond W = 3 L = 3 model = "SpinGC" method = "Lanczos" lattice = "Honeycomb" J0x = -1.0 J0y = 0.0 J0z = 0.0 J1x = 0.0 J1y = -1.0 J1z = 0.0 J2x = 0.0 J2y = 0.0 J2z = -1.0 S y i Sy j J z X z bond S z i S z j
18 H = t X hi,ji (c i c j +h.c.)+u X i n i" n i# L = 8 model = "FermionHubbard" method = "Lanczos" lattice = "chain" t = 1.0 U = 8.0 nelec = 8 2Sz = 0
19 FullDiag, TPQ, Lanczos Hubbard model, L=8, U/t=8, half filling, Sz=0 E/Ns TPQ FullDiag Lanczos D/Ns TPQ FullDiag Lanczos T/t T/t
20 HPhi/samples/Standard/ Hubbard Heisenberg Kitaev Standard mode StdFace.def StdFace.def - (PC spin 1/2 24site, Hubbard 12 ) -Lanczos ( ) -TPQ ( )
21
22 #!/bin/sh #QSUB -queue F144cpu #QSUB -node 128 #QSUB -mpi 128 #QSUB -omp 24 #QSUB -place pack #QSUB -over false #PBS -l walltime=24:00:00 #PBS -N HPhi cd ${PBS_O_WORKDIR} source /home/issp/materiapps/hphi/hphivars.sh mpijob HPhi -s StdFace.def
23
24
25
26 H+ = X i,j,k,l X 1, 2, 3, 4 I ijkl c i 1 c j 2 c k 3 c l 4 i σ1 j σ2 k σ3 l σ4
27 - CoulombIntra H+ = i ================================= NCoulombintra 2 ================================= ===========Exchange============== ================================= U i n i n i -Exchange H+ = i,j J Ex ij (S + i S j + S i S+ j ) ================================= NExchange 2 ================================= ===========Exchange============== =================================
28
29
HPhi_mVMC.key
@ 2016/12/01 http://ma.cms-initiative.jp/ja/listapps/hphi Developers of HΦ M. Kawamura T. Misawa K. Yoshimi Y. Yamaji S. Todo N. Kawashima For Hubbard model, spin-s Heisenberg model, Kondo-lattice model
Hphi実行環境導入マニュアル_v1.1.1
HΦ の計算環境構築方法マニュアル 2016 年 7 月 25 日 東大物性研ソフトウェア高度化推進チーム 目次 VirtualBox を利用した HΦ の導入... 2 VirtualBox を利用した MateriAppsLive! の導入... 3 MateriAppsLive! への HΦ のインストール... 6 ISSP スパコンシステム B での HΦ の利用方法... 8 各種ファイルの置き場所...
unix15-script2_09.key
UNIX講習会 シェルスクリプト2 31/July/2015 情報管理解析室 西出 浩世 SGE ~/unix15/sge $ cd ~/unix15/sge $ ls script* script2.sh script3.sh script4.sh ~/unix15/sge/results sam 12 $ ls results/*.sam $ rm -r results $ cp -r /usr/local/data/unix15/sge/results.
格子スピン模型の計算科学2018_実習
e-mail: [email protected] ALPS ALPS mc-09-snapshot Paraview Mac Paraview Mac ITC-LMS (https://itc-lms.ecc.u-tokyo.ac.jp/portal/login) 0618.pdf python python2.7 pyenv shell anaconda-4.0.0 ALPS
EP7000取扱説明書
EP7000 S0109-3012 3 47 811 1213 1419 2021 53 54 5560 61 6263 66 2223 2427 2830 3133 3436 3740 4142 4344 45 46 4750 5152 2 4 5 6 7 1 3 4 5 6 7 8 9 15 16 17 18 13 EP7000 2 10 11 12 13 14 19 20 21 22 23 24
[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3
4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1
43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd
n 808 3.0 % 86.8 % 8.3 % n 24 4.1 % 54.0 % 37.5 % 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 0% 37.4 % 7.2 % 27.2 % 8.4 % n 648 13.6 % 18.1% 45.4 % 4.1% n 18 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90
untitled
20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -
untitled
19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X
2.
2. 10 2. 2. 1995/12006/111995/42006/12 2. 10 1995120061119954200612 02505 025 05 025 02505 0303 02505 250100 250 200 100200 5010050 100200 100 100 50100 100200 50100 10 75100100 0250512 02505 1 025051205
IA [email protected] Last updated: January,......................................................................................................................................................................................
untitled
Tylor 006 5 ..........5. -...... 5....5 5 - E. G. BASIC Tylor.. E./G. b δ BASIC.. b) b b b b δ b δ ) δ δ δ δ b b, b ) b δ v, b v v v v) ) v v )., 0 OPTION ARITHMETIC DECIMAL_HIGH INPUT FOR t TO 9 LET /*/)
1 1.1 (JCPRG) 30 Nuclear Reaction Data File (NRDF) PC GSYS2.4 JCPRG GSYS2.4 Java Windows, Linux, Max OS X, FreeBSD GUI PNG, GIF, JPEG X Y GSYS2
(GSYS2.4) GSYS2.4 Manual SUZUKI Ryusuke Hokkaido University Hospital Abstract GSYS2.4 is an update version of GSYS version 2. Main features added in this version are Magnifying glass function, Automatically
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)
201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50
syuryoku
248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1
Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),
1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0
P072-076.indd
3 STEP0 STEP1 STEP2 STEP3 STEP4 072 3STEP4 STEP3 STEP2 STEP1 STEP0 073 3 STEP0 STEP1 STEP2 STEP3 STEP4 074 3STEP4 STEP3 STEP2 STEP1 STEP0 075 3 STEP0 STEP1 STEP2 STEP3 STEP4 076 3STEP4 STEP3 STEP2 STEP1
「東京こどもネット・ケータイヘルプデスク(こたエール)」平成22年度相談実績の概要
734, 35% 62, 11% 84, 16% 530, 26% 235, 11% PC) 396, 73% 579, 28% ) (21 ) 2 3 4 5 6 7 8 9 10 11 12 13 200 150 100 22 182 200 150 100 22 50 54 PC 49 52 PC 50 41 14 17 1 1 4 16 3 6 14 180 250 200 150 235
6 30 2005 10 1 65 2,682 00 21.9 481 1 2,776 21.0 15 1,740 00 5.8 107 13.6 40 2025 24.2-0 - -1 - -2 - -3 - -4 - -5 - -6 - -7 - -8- -9 - - 10 - -11 - - 12 - - 13-10 11 59 4 59 3 10 17 - 14 - - 15 - - 16
2014-11.key
2014-11 1 2 3 4 5 7 8 9 10 11 12 PC 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive
AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数
パワーMOS FET π-MOS
7 VDSS VDSS SJ147 TO-0IS 60 1 0. SJ55 L - 30 5 0.1 P 15 SJ183 L - 60 5 0.35 SJ537 L - TO-9MOD 50 5 0.19 P 15 SJ00 180 10 0.83 SJ567 00.5.0 SJ01 00 1 0.63 SJ570 L - TO-0AB 60 30 0.038 P 15 SJ4 TO-0FL/SM
p06.dvi
I 6 : 1 (1) u(t) y(t) : n m a n i y (i) = b m i u (i) i=0 i=0 t, y (i) y i (u )., a 0 0, b 0 0. : 2 (2), Laplace, (a 0 s n +a 1 s n 1 + +a n )Y(s) = (b 0 s m + b 1 s m 1 + +b m )U(s),, Y(s) U(s) = b 0s
17. (1) 18. (1) 19. (1) 20. (1) 21. (1) (3) 22. (1) (3) 23. (1) (3) (1) (3) 25. (1) (3) 26. (1) 27. (1) (3) 28. (1) 29. (1) 2
1. (1) 2. 2 (1) 4. (1) 5. (1) 6. (1) 7. (1) 8. (1) 9. (1) 10. (1) 11. (1) 12. (1) 13. (1) 14. (1) 15. (1) (3) 16. (1) 1 17. (1) 18. (1) 19. (1) 20. (1) 21. (1) (3) 22. (1) (3) 23. (1) (3) 24. 1 (1) (3)
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
2! $ ' $ % & " " " " "
Jp SB-600 SB-600 (Jp) 2! $ ' $ % & " " " " " 3 ' ( # # # # # # & " " "! " " # ' # $ # " " " " " 4 " " " " ( # " " " " 5 6 " " " " # # # ( $ " " " 7 " " " " " " " # # # ( $ ' 8 9 k k k k k k k k k u 10
( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp
( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
Nikon SB-600 使用説明書
Jp SB-600 SB-600 (Jp) 2! $ ' $ % & " " " " " 3 ' ( # # # # # # & " " "! " " # ' # $ # " " " " " 4 " " " " ( # " " " " 5 6 " " " " # # # ( $ " " " 7 " " " " " " " # # # ( $ ' 8 9 k k k k k k k k k u 10
1 URu2Si2 2 (n,l,m) + σ l: 4f (n=4,l=3) 5f (n=5,l=3) d 5 1. S 2. 1. L L=0(S), 1(P), 2(D), 3(F), 4(G), 5(H),... (2S+1) LJ 3 () d ~ > f >> > 1~10 ev 0.1~0.3 ev 1~100 K LS (Russell-Saunders) f 2 less than
syspro-0405.ppt
3 4, 5 1 UNIX csh 2.1 bash X Window 2 grep l POSIX * more POSIX 3 UNIX. 4 first.sh #!bin/sh #first.sh #This file looks through all the files in the current #directory for the string yamada, and then prints
OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£±¡Ë
2012 5 24 scalar Open MP Hello World Do (omp do) (omp workshare) (shared, private) π (reduction) PU PU PU 2 16 OpenMP FORTRAN/C/C++ MPI OpenMP 1997 FORTRAN Ver. 1.0 API 1998 C/C++ Ver. 1.0 API 2000 FORTRAN
Jacques Garrigue
Jacques Garrigue Garrigue 1 Garrigue 2 $ print_lines () > for i in $1; do > echo $i > done $ print_lines "a b c" a b c Garrigue 3 Emacs Lisp (defun print-lines (lines) (dolist (str lines) (insert str)
グラフ数値読み取りシステム (GSYS2.4) 利用の手引
(GSYS2.4) GSYS2.4 Manual SUZUKI Ryusuke Hokkaido University Hospital 2011 6 7 Abstract GSYS2.4 is an update version of GSYS version 2. Main features added in this version are Magnifying glass function,
OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£±¡Ë
2011 5 26 scalar Open MP Hello World Do (omp do) (omp workshare) (shared, private) π (reduction) scalar magny-cours, 48 scalar scalar 1 % scp. ssh / authorized keys 133. 30. 112. 246 2 48 % ssh 133.30.112.246
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
スケーリング理論とはなにか? - --尺度を変えて見えること--
? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:[email protected] DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?
