untitled
|
|
|
- さゆり みしま
- 9 years ago
- Views:
Transcription
1
2 - 1 -
3 - 2 -
4 - 3 -
5 - 4 -
6
7 - 6 -
8 - 7 -
9 () - 8 -
10 (XY) - 9 -
11
12 - 11 -
13 - 12 -
14 - 13 -
15 - 14 -
16 - 15 -
17 - 16 -
18 - 17 -
19 - 18 -
20 - 19 -
21 - 20 -
22
23 - 22 -
untitled
19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X
2
2007 8 12 1 Q&A Q1 A 2007 6 29 2008 1 1 14 1 12 1 2 3 1 1 13 1 2 15 1 1 2 Q2 A 627 1 20 1 1 3 15 2003 18 2 3 4 5 3 406 44 2 1997 7 16 5 1 1 15 4 52 1 31 268 17 5 60 55 50 1999 3 9 1999 3 39 40 44 100 1
取扱説明書 [F-07E]
2 3 4 5 6 7 8 9 0 2 3 4 5 a b c d a b c d 6 a b cd e a b c d e 7 8 9 20 a b a a b b 2 22 a c b d 23 24 a b ef ghi j k cd l m n op q w xy z r s t u v A B a b c d e f g h i j k l m n o p q r s 25 t u v
2
D 1 2 3 XX XY ( ) 4 5 GID ( ) ( ) ( ) ( ) WHO( ) ( ) ( ) WHO ( ) WHO ( ) 6 7 8 9 X Y XX XY XO XXY XXXY Y Y SRY Y SRY X XX XY SRY XY XX Y Y X Y Y DNA DNA 10 XY XY 11 12 13 F M T 14 U H R 15 K N F 16 M T
1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3...........................
24 3 28 : 1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3............................................. 9 5 9 5.1.........................................
Microsoft Word - 触ってみよう、Maximaに2.doc
i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x
システムの概要
- i - - ii - 1 Excel BCS.CSV Excel BCS.CSV Excel A B C D Excel BCS.CSV - 1 - 2 Excel (V) (T) AB AB - 2 - 3 A B A B B C B C 1 B A - 3 - 1 C B 4 1 5 6 BCS - 4 - 4 1 Excel - 5 - 32 30 Excel Alt+Enter 1-6
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
stat2_slides-13.key
!2 !3 !4 !5 !6 !7 !8 !9 !10 !11 aaacs3ichvfnixnbek0zv9b4svk9eraxcaoazhzflwulxjyuylilsxbs6dqkvempobtnmqxz9oaf8q/4t7z5b6xmwqkjyehb6/dedvdx5awspitjryi+dv3gzvt7tzt37t67v989edd0tnicb8iq685y7lfjg4mgg8kz0ihxucltfpf+pz9eovpsmk9hweje85mrhrq8egw7cgmqmacjgsrwdofa4ihydb4q0mtwpb1bcg2piy3l4krrrvkaa0731fcmthpyspaf6m8/zivz71isc33fbsegl9uak9fscfz1x/w87amh8/+ctdbtjf2kdbyl0g3owszosu7p8dsksqmjqnhvr2lshknnxzbcydmzvx5llhz8hiochmv0k7qdecoeejnlhxwujrcw/boi5tr7pc7jqxmy+21trf5lg1wheduppsmrgeashyoqxyjlqwwyqxqoglos4mjj6pwjoxdcbfpzh4aqbn95fwwp+2nstz++6h2/24xjdx7be1pbcm/ggd7acqxarek0jlloc/w6hsv5pf1b42ht8xd+ilj/bkljtwk=
Copyright 2003 MapNet.Corp All rights reserved (1) V2.2 (2) (3) (4) (5) (6) 1 (7) (8) (9) 1/2500 1/250 1/10000 1/10000 20 5 1/2500 20 1/500 1/500 1/250 5 1 (1) (2) (3) OK One Point () and or
2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)
1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a
ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4
20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d
GIS GIS -2-
GIS GIS GIS GIS GIS GIS GIS GIS Jeffrey Star/John Estes 1992 GIS GIS= GIS -1- GIS GIS -2- (1,1) (2,1) 30m 543m 1 1:200000 1.5 1:25000 00 77 1:25000 5339-46 1:25000 5339-37 1:25000 10 00 99 1 50m 20 50m
独立性の検定・ピボットテーブル
II L04(2016-05-12 Thu) : Time-stamp: 2016-05-12 Thu 12:48 JST hig 2, χ 2, V Excel http://hig3.net ( ) L04 II(2016) 1 / 20 L03-Q1 Quiz : 1 { 0.95 (y = 10) P (Y = y X = 1) = 0.05 (y = 20) { 0.125 (y = 10)
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,
6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,
a x x x x 1 x 2 Ý; x. x = x 1 + x 2 + Ý + x = 10 1; 1; 3; 3; 4; 5; 8; 8; 8; 9 1 + 1 + 3 + 3 + 4 + 5 + 8 + 8 + 8 + 9 10 = 50 10 = 5 . 1 1 Ý Ý # 2 2 Ý Ý & 7 7; 9; 15; 21; 33; 44; 56 21 8 7; 9; 15; 20; 22;
Go a σ(a). σ(a) = 2a, 6,28,496, = 2 (2 2 1), 28 = 2 2 (2 3 1), 496 = 2 4 (2 5 1), 8128 = 2 6 (2 7 1). 2 1 Q = 2 e+1 1 a = 2
Go 2016 8 26 28 8 29 1 a σ(a) σ(a) = 2a, 6,28,496,8128 6 = 2 (2 2 1), 28 = 2 2 (2 3 1), 496 = 2 4 (2 5 1), 8128 = 2 6 (2 7 1) 2 1 Q = 2 e+1 1 a = 2 e Q (perfect numbers ) Q = 2 e+1 1 Q 2 e+1 1 e + 1 Q
A
A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2
Gmech08.dvi
63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)
7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6
26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7
untitled
Standard / Option / Professional WinROOF WinROOF Ver5.0 3 1 / TIFF BMP JPEG FRN( ) OLS(LEXT ) 2 2 3 Z1 3D Viewer 4 2 2 [] (8bit 16bit (16bit 8bit 5 1 1 [ ] 6 Excel 2 1 FFT 7 [] 8 Shift ( ) Ctrl ( ) 9 10
A&A Jツール 作図・編集キット
i... 1... 2 10 N... 2 2 5 N... 3... 5 5 7 9 11 13... 5... 6... 6 2... 6... 7... 7... 8... 9 JIS... 10 JIS 12.7/1.6JIS 25.4/1.6JIS 31.8/1.2JIS 31.8/1.6... 10... 10... 11... 11... 12... 12... 13... 13 3
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
slide1.dvi
1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp
+ P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p
a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ
1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c
04年度LS民法Ⅰ教材改訂版.PDF
?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B
さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1
... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =
ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y
01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y
CONTENTS 1 2 2 2 3 3 3 3 3 2 4 4 5 6 7 7 7 7 7 3 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 4 11 11 11 11 11 11 11 11 12 12 12 5 13 13 13 6 15 15
CONTENTS 1 2 2 2 3 3 3 3 3 2 4 4 5 6 7 7 7 7 7 3 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 4 11 11 11 11 11 11 11 11 12 12 12 5 13 13 13 6 15 15 15 15 17 7 18 18 18 8 19 19 9 20 20 20 20 20 21 21
II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1
II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2
( ) x y f(x, y) = ax
013 4 16 5 54 (03-5465-7040) [email protected] hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy
…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå
[email protected] II 2009 6 11 [A] D B A B A B A B DVD y = 2x + 5 x = 3 y = 11 x = 5 y = 15. Google Web (2 + 3) 5 25 2 3 5 25 Windows Media Player Media Player (typed lambda calculus) (computer
曲面のパラメタ表示と接線ベクトル
L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =
untitled
24 212 1 24 NO.212-1 GDP 2 8 4.3%9 7.6%2 1.% 7 47 2 2 8 9 1 1 2 GDP 196 8 7 9 1 8 4.3%9 7.6%2 1 1.%7 11.5% 2 8 2 GDP 7 8 9 7 3 2 7 8 15 1 1GDP 1 5 2GDP 5-5 -5-1 -1 55 6 7 8 9 1 UFJ -15 1 2 3 4 5 6 7 8
1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1
ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD
PDF CD-ROM CD-ROM Manual PDF Adobe Reader Adobe Web
PDF CD-ROM CD-ROM Manual PDF Adobe Reader Adobe Web [ ] [OK] [OK] 40 () () [ ][ ] [OK] [ ] [ ][ ] ] [ [ ][ ] [ ] 3 20 [OK] - CONFORMat CONFORMat Dual 2 2 X Y 3 [ ][ ] 13 [ ][2 ] [2 ] [ ][2 ] [2 ] [ ]
0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4
0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)
2変量データの共分散・相関係数・回帰分析
2, 1, Excel 2, Excel http://hig3.net ( ) L04 2 I(2017) 1 / 24 2 I L04(2017-10-11 Wed) : Time-stamp: 2017-10-10 Tue 23:02 JST hig L03-Q1 L03-Q2 Quiz : 1.6m, 0.0025m 2, 0.05m. L03-Q3 Quiz : Sx 2 = 4, S x
1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp
1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X
untitled
[email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP
Microsoft Word - 計算力学2007有限要素法.doc
95 2 x y yz = zx = yz = zx = { } T = { x y z xy } () {} T { } T = { x y z xy } = u u x y u z u x x y z y + u y (2) x u x u y x y x y z xy E( ) = ( + )( 2) 2 2( ) x y z xy (3) E x y z z = z = (3) z x y
PowerPoint プレゼンテーション
WinCeph Ver.8.05 No.1 Ver. 1.02 We are WinCeph. And you? 1 2 3 4 5 6 7 8 1 Window Window / Lat. Lat Lat. 2 Ricketts GO/Gn/Pog VTO N Ricketts Window X-Y WinCeph Lat. SD WinCeph Lat. SD SD SD SD SD PA Lateral
CG38.PDF
............3...3...6....6....8.....8.....4...9 3....9 3.... 3.3...4 3.4...36...39 4....39 4.....39 4.....4 4....49 4.....5 4.....57...64 5....64 5....66 5.3...68 5.4...7 5.5...77...8 6....8 6.....8 6.....83
L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P
005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,
expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16
Lecture 11: PSRGs via Random Walks on Graphs October 22, 2013 Nii (NII) Lec. 11 October 22, 2013 1 / 16 expander graph [IZ89] Nii (NII) Lec. 11 October 22, 2013 2 / 16 Expander Graphs Expander Graph (
1 DM-CAD(SXF) DM SXF
1 DM-CAD(SXF)... 1 1.1... 1 1.2 DM SXF... 2 1.3... 4 2... 7 3... 8 4... 8 5... 9 6... 10 7 3... 11 8... 12 9... 13 9.1... 13 9.2... 15 10... 17 11... 18 12... 19 13... 20 13.1... 20 13.2... 20 13.3...
f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14
B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi
