Run-Based Trieから構成される 決定木の枝刈り法
|
|
|
- えつみ ふじがわ
- 8 years ago
- Views:
Transcription
1 Run-Based Trie
2 Run-Based Trie Simple Search Run-Based Trie
3 Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network X Default Deny Figure :
4 f f : {, } dw { P, D } dw, P, D
5 i R v i = b b 2... b dw (b i {,, }, v {P, D}) Table : Table : Filter F R R 2 R 3 R 4 R 5 R 6 Filter F F 2 R R 2 R 3 R 4 R 5 R 6
6 Packet Rule R P permit Packet to pass if Packet match R then permit Packet else Rule R D 2 deny Packet to pass if Packet match R 2 then deny else Rule R D 3 deny Packet to pass if Packet match R 3 then deny else if Rule R P n permit Packet to pass if Packet match R n then permit else deny Packet to pass deny Packet Figure : R D n
7 SubGraph Merging Tapdiya et al [] 29 [2] 23 [3] 23 Srinivassan et al [4] 998 HiCuts, HyperCuts Gupta et al [5], Singh et al [6] 2, 23 Grouper Ligatti et al [7] 2 Run-Based Trie [8] 25
8 Run-Based Trie HiCuts HyperCuts ( ) Run-Based Trie
9 (, Run-Based Trie )
10 Run-Based Trie Table : Filter F Filter F R R 7 R 2 R 8 R 3 R 9 R 4 R R 5 R R 6 R 2 R 2 4 R 3 3
11 Run-Based Trie T T 2 T 3 T 4 R 3 R 4 R R R 2 4 R 2 R2 R 2 R 8 R 6 R 9 R 2 3 R 7 R R 2 R 5 Figure : Run-Based Trie i T i R = R 3 =
12 Simple Search T T 2 T 3 T 4 R 3 R 4 R R R 2 4 R 2 R2 R 2 R 8 R 6 R 9 R 2 3 R 7 R R 2 R 5 Figure : Run-Based Trie R 6, R 4, R, R 2 R O(NdW + (dw) 2 ) N
13 T i S i S = { {R 3, R 4}, {R 2, R 3, R 4}, {R 3, R 4, R 8}, {R 5}, ϕ } S 2 = { {R }, {R, R }, {R, R 6}, {R }, {R 9, R }, ϕ } S 3 = { {R 2 3}, {R 2 4}, {R 2 4, R 7}, ϕ } S 4 = { {R 2, R 2, R 2}, ϕ }
14 Decision Tree S 2 S 3 2 S S 3 2 ϕ ϕ S 3 S 2 3 S 3 3 ϕ S 3 S 2 3 S 3 3 ϕ S 3 S 2 3 S 3 3 ϕ S 3 S 2 3 S 3 3 ϕ S 4 ϕs 4 ϕ S 4 ϕs 4 ϕ S 4 ϕs 4 ϕ S 4 ϕs 4 ϕ S 4 ϕs 4 ϕ S 4 ϕs 4 ϕ R R 3 R R 4 R R 4 R R R 3 R R 4 R R 4 R R R R 3 R R 4 R R 4 R R 6 S 4 ϕs 4 ϕ S 4 ϕs 4 ϕ R 2 R 2 R 7 R 7 R 2 Figure : Run-Based Trie O((dW) 2 ) N
15 O((dW) 2 ) O(N dw ) T, T 2,..., T k T k+
16 S = { {R 3, R 4}, {R 2, R 3, R 4}, {R 3, R 4, R 8}, {R 5}, ϕ } S 2 = { {R }, {R, R }, {R, R 6}, {R }, {R 9, R }, ϕ } S 3 = { {R 2 3}, {R 2 4}, {R 2 4, R 7}, ϕ } S 4 = { {R 2, R 2, R 2}, ϕ } S = {,,,, ϕ } S 2 = {,,,,, ϕ } S 3 = {,,, ϕ } S 4 = {, ϕ }
17 R R 6 T 2 R R 9 S 2 ϕ T 2 {R } () {R } () R S 2 ϕ Figure : T 2 S 2 = { {R }, {R, R }, {R, R 6}, {R }, {R 9, R }, ϕ }
18 / // / // Decision Tree Figure : (T ) (T 2 )
19 Decision Tree //// / // T T T 2 Figure :
20 Decision Tree ϕ () / //// // // / // ϕ// Figure :
21 Decision Tree ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ R 2 R 4 R 4 R 3 R 8 R 4 R R R 5 R R 6 R R R 7 R 9 R ϕ ϕ Figure : :
22 Decision Tree R 2 R4 R ϕ ϕ R 3 R 8 R 4 R R 5 R ϕ R R R 6 R R 7 R 9 Figure : : 48 23
23 OS : CentOS Release 6.2 CPU : Intel Core i7-98x 3.33 GHz : 24GB : C++ : gcc version 4.4.6
24 pruned Decision Tree Decision Tree Memory (MB) Length of bit (dw) Figure :
25 7 pruned Decision Tree Decision Tree 6 5 Create time (s) Length of bit (dw) Figure :
26 6.5 pruned Decision Tree.4 Search Time (s).3.2. Number of Rule (N) Figure :
27 Run-Based Trie O(N dw ) 6
28 A. Tapdiya, and E. Fulp, Towards optimal firewall rule ordering utilizing directed acyclical graphs, Computer Communications and Networks, 29. ICCCN 29. Proceedings of 8th Internatonal Conference on, pp.-6, Aug 29. K. TANAKA, K. MIKAWA, and M. HIKIN, A heuristic algorithm for reconstructing a packet filter with dependent rules, IEICE Trans. Commun., vol.96, no., pp.55-62, Jan 23. K. Tanaka, K. Mikawa, and K. Takeyama, Optimization of packet filter with maintenance of rule dependencies, IEICE Communications Express, vol.2, no.2, pp.8-85, Feb 23. V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, Fast and scalable layer four switching, SIGCOMM Comput. Commun. Rev., vol.28, no.4, pp.9 22, Oct P. Gupta, and N. McKeown, Classifying packets with hierarchical intelligent cuttings, Micro, IEEE, vol.2, no., pp.34-4, Jan 2. S. Singh, F. Baboescu, G. Varghese, and J. Wang, Packet classification using multidimensional cutting, Proceedings of the 23 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp , New York, NY, USA, 23, ACM. J. Ligatti, J. Kuhn, and C. Gage, A packet-classification algorithm for arbitrary bitmask rules, with automatic time-space tradeoffs, Proceedings of the International Conference on Computer Communication Networks (ICCCN), pp.45 5, Aug. 2. K. MIKAWA, and K. TANAKA, Run-based trie involving the structure of arbitrary bitmask rules, IEICE Transactions on Information and Systems, vol.e98.d, no.6, pp.26-22, 25.
23
Master's Thesis / 修 士 論 文 映 像 配 信 の 中 断 から 復 旧 までの 時 間 を 短 縮 するネットワーク 再 構 築 手 法 の 改 良 隅 田, 貴 久 三 重 大 学, 2011. 三 重 大 学 大 学 院 地 域 イノベーション 学 研 究 科 博 士 前 期 課 程 地 域 イノベーション 学 専 攻 http://hdl.handle.net/10076/12400
IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info
1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3
DEIM Forum 2017 H ,
DEIM Forum 217 H5-4 113 8656 7 3 1 153 855 4 6 1 3 2 1 2 E-mail: {satoyuki,haya,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp,.,,.,,.,, 1.. 1956., IBM IBM RAMAC 35 IBM 35 24 5, 5MB. 1961 IBM 131,,, IBM 35 13.,
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
nakayama15icm01_l7filter.pptx
Layer-7 SDN SDN NFV 50 % 3 MVNO 1 2 ICM @ 2015/01/16 2 1 1 2 2 1 2 2 ICM @ 2015/01/16 3 2 Service Dependent Management (SDM) SDM Simple Management of Access-Restriction Translator Gateway (SMART-GW) ICM
CSIS (No.324) {kazuya-o, okuda, 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geograp
CSIS (No.324) {kazuya-o, okuda, suguru}@is.naist.jp 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geographically Aggregatable Location-based Multicast Address)
2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server
a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,
Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3
36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there
3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root
1,a) 2 2 1. 1 College of Information Science, School of Informatics, University of Tsukuba 2 Faculty of Engineering, Information and Systems, University of Tsukuba a) [email protected] 2.
27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U
YouTube 2016 2 16 27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM UGC UGC YouTube k-means YouTube YouTube
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
TCP T ransmission Control Protocol TCP TCP TCP TCP TCP TCP TCP TCP c /(18)
3 -- 4 1 TCP T ransmission Control Protocol 2013 12 TCP TCP TCP TCP TCP TCP TCP TCP c 2013 1/(18) 3 -- 4 -- 1 1--1 TCP 2013 12 TCP Transmission Control Protocol TCP TCP TCP 1981 RFC 793 Request for Comments
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation
Jan. 2005 Jan. 2005 2 4 12 13 23 29 42 47 52 58 59 68 95 96 69 72 77 78 83 84 2 / 3 4 Vol.78 No.1 2005 5 6 Vol.78 No.1 2005 A040728 0043 7 V 8 Vol.78 No.1 2005 9 µ 10 Vol.78 No.1 2005 µ 11 12 Vol.78 No.1
9_18.dvi
Vol. 49 No. 9 3180 3190 (Sep. 2008) 1, 2 3 1 1 1, 2 4 5 6 1 MRC 1 23 MRC Development and Applications of Multiple Risk Communicator Ryoichi Sasaki, 1, 2 Yuu Hidaka, 3 Takashi Moriya, 1 Katsuhiro Taniyama,
P2P P2P Winny 3 P2P 15 20 P2P 1 P2P, i
26 P2P Reduction of search packets by sharing peer information in P2P communication 1175073 2015 2 27 P2P P2P Winny 3 P2P 15 20 P2P 1 P2P, i Abstract Reduction of search packets by sharing peer information
opentag_nv.pptx
OpenTag, This work is supported by Ministry of Internal Affairs and Communications of the Japanese Government. Agenda 1. Introduction 2. Design 3. Implementation 4. Evaluation 5. Conclusion 1. Introduction
xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL
PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP
Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) 2 3 4 5 6 2. Vocaloid2 2006 1 PV 2009 1 1100 200 YouTube 1 minato minato ussy 3D MAD F EDis ussy
1, 2 3 1, 2 Web Fischer Social Creativity 1) Social Creativity CG Network Analysis of an Emergent Massively Collaborative Creation Community Masahiro Hamasaki, 1, 2 Hideaki Takeda 3 and Takuichi Nishimura
[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So
1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:
[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis
1,a) 2 2 2 1 2 3 24 Motion Frame Omission for Cartoon-like Effects Abstract: Limited animation is a hand-drawn animation style that holds each drawing for two or three successive frames to make up 24 frames
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
Microsoft Word - GraphLayout1-Journal-ver2.doc
ÕÒÖÎ ÆÉ ÐÖÔÒ Ñ ˆ e Ê j ÉÏÏÔÐÏÒuu ËÊ o y * ÎÏ Ó ÏÕ( ) (* É ) An Improvement of Force-directed Hierarchical Graph Layout And Its Application to Web Site Visualization Jun DOI Takayuki ITOH IBM Research,
,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN
DEIM Forum 2018 F1-1 LAN LSTM 112 8610 2-1-1 163-8677 1-24-2 E-mail: [email protected], [email protected], [email protected],,.,,., LAN,. Android LAN,. LSTM LAN., LSTM, Analysis of Packet of
<4D6963726F736F667420576F7264202D2088E293608E71836C83628367838F815B834E89C28E8B89BB2E646F63>
西 山 慧 子 * 伊 藤 貴 之 ** (*) お 茶 の 水 女 子 大 学 大 学 院 人 間 文 化 研 究 科 (**) お 茶 の 水 女 子 大 学 理 学 部 情 報 科 学 科 E-mail : {nishy, itot}@itol.is.ocha.ac.jp 1. NA [1] A B C E F B,E 1 A, 1 A,B,E B E C,F 1 1 A 2 3 C,F A
36 581/2 2012
4 Development of Optical Ground Station System 4-1 Overview of Optical Ground Station with 1.5 m Diameter KUNIMORI Hiroo, TOYOSHMA Morio, and TAKAYAMA Yoshihisa The OICETS experiment, LEO Satellite-Ground
スライド 1
JANOG 14 2004.07.23 NTT [email protected] 1 Peer-to-Peer ISP P2P AS / Copyright 2004 NTT Corporation, All Rights Reserved 2 Peer-to-Peer ISP P2P AS Copyright 2004 NTT Corporation, All Rights
total-all-nt.dvi
XI W I D E P R O J E C T 1 WIDE Reliable Multicast 1.1 TV 1 1 TCP WIDE JGN/JB SOI (DV) Reliable Multicast (RM) US Reliable Multicast IETF RMT-WG PGM Digital Fountain FEC Tornado Code Ruby Code 1.2 WIDE
IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus
IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsushi UMEMURA, Yoshiharu KANESHIMA, Hiroki MURAKAMI(IHI
PIM-SM,PIM-SSM,PIM-DM,MOSPF ( ) ( ) () ( ) 1 2 MAC (FDB: ) 3 MAC MAC ( ) IP ( ) ( ) 1 2 SDN(Software Defined Network) 1 2 MAC
SDN a),b) c),a) a) a),d) A study of quantitative performance measurement on SDN environment Seiichi YAMAMOTO a),b), Wataru NISHIGATA c),a), Kosuke UEDA a), and Eiji KAWAI a),d) SDN OpenFlow () ryu,trema
連載講座 : 高生産並列言語を使いこなす (4) ゲーム木探索の並列化 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 準備 問題の定義 αβ 法 16 2 αβ 法の並列化 概要 Young Brothers Wa
連載講座 : 高生産並列言語を使いこなす (4) ゲーム木探索の並列化 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 準備 16 1.1 問題の定義 16 1.2 αβ 法 16 2 αβ 法の並列化 17 2.1 概要 17 2.2 Young Brothers Wait Concept 17 2.3 段数による逐次化 18 2.4 適応的な待機 18 2. 強制終了
IPSJ SIG Technical Report Vol.2015-GN-93 No.29 Vol.2015-CDS-12 No.29 Vol.2015-DCC-9 No /1/27 1,a) 1 1 LAN IP 1), 2), 3), 4), 5) [
1,a) 1 1 LAN IP 1), 2), 3), 4), 5) 1. 2011 50 60 [14] [14] 1 NTT 3-4-1 Shibaura, Minato-ku, Tokyo 108-8118, Japan a) [email protected] Web P2P(Peer to Peer) P2P [19] 1 World Wide Web Consortium( W3C)
1 DHT Fig. 1 Example of DHT 2 Successor Fig. 2 Example of Successor 2.1 Distributed Hash Table key key value O(1) DHT DHT 1 DHT 1 ID key ID IP value D
P2P 1,a) 1 1 Peer-to-Peer P2P P2P P2P Chord P2P Chord Consideration for Efficient Construction of Distributed Hash Trees on P2P Systems Taihei Higuchi 1,a) Masakazu Soshi 1 Tomoyuki Asaeda 1 Abstract:
11 22 33 12 23 1 2 3, 1 2, U2 3 U 1 U b 1 (o t ) b 2 (o t ) b 3 (o t ), 3 b (o t ) MULTI-SPEAKER SPEECH DATABASE Training Speech Analysis Mel-Cepstrum, logf0 /context1/ /context2/... Context Dependent
Title 中國宗教文獻研究國際シンポジウム報告書 ( 大規模佛教文獻群に對する確率統計的分析の試み / 師茂樹 ) Author(s) Citation (2004) Issue Date URL Right Typ
Title 中國宗教文獻研究國際シンポジウム報告書 ( 大規模佛教文獻群に對する確率統計的分析の試み / 師茂樹 ) Author(s) Citation (2004) Issue Date 2004-12 URL http://hdl.handle.net/2433/65875 Right Type Conference Paper Textversion publisher Kyoto University
2 HI LO ZDD 2 ZDD 2 HI LO 2 ( ) HI (Zero-suppress ) Zero-suppress ZDD ZDD Zero-suppress 1 ZDD abc a HI b c b Zero-suppress b ZDD ZDD 5) ZDD F 1 F = a
ZDD 1, 2 1, 2 1, 2 2 2, 1 #P- Knuth ZDD (Zero-suppressed Binary Decision Diagram) 2 ZDD ZDD ZDD Knuth Knuth ZDD ZDD Path Enumeration Algorithms Using ZDD and Their Performance Evaluations Toshiki Saitoh,
SCREENOS NAT ScreenOS J-Series(JUNOS9.5 ) NAT ScreenOS J-Series(JUNOS9.5 ) NAT : Destination NAT Zone NAT Pool DIP IF NAT Pool Egress IF Loopback Grou
NAT NETWORK ADDRESS TRANSLATION SCREENOS NAT ScreenOS J-Series(JUNOS9.5 ) NAT ScreenOS J-Series(JUNOS9.5 ) NAT : Destination NAT Zone NAT Pool DIP IF NAT Pool Egress IF Loopback Group (ScreenOS ) 2 Copyright
2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,
DEIM Forum 2016 E1-4 525-8577 1 1-1 E-mail: [email protected], [email protected], [email protected] 373 1.,, itunes Store 1, Web,., 4,300., [1], [2] [3],,, [4], ( ) [3], [5].,,.,,,,
[email protected] No1 No2 OS Wintel Intel x86 CPU No3 No4 8bit=2 8 =256(Byte) 16bit=2 16 =65,536(Byte)=64KB= 6 5 32bit=2 32 =4,294,967,296(Byte)=4GB= 43 64bit=2 64 =18,446,744,073,709,551,615(Byte)=16EB
Web Web Web Web Web, i
22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity
Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho
Haiku Generation Based on Motif Images Using Deep Learning 1 2 2 2 Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura 2 1 1 School of Engineering Hokkaido University 2 2 Graduate
[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T
LAN Android Transmission-Control Middleware on multiple Android Terminals in a WLAN Environment with consideration of Round Trip Time Ai HAYAKAWA, Saneyasu YAMAGUCHI, and Masato OGUCHI Ochanomizu University
ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc
VOL. J98-A NO. 1 JANUARY 2015 本 PDFの 扱 いは 電 子 情 報 通 信 学 会 著 作 権 規 定 に 従 うこと なお 本 PDFは 研 究 教 育 目 的 ( 非 営 利 )に 限 り 著 者 が 第 三 者 に 直 接 配 布 すること ができる 著 者 以 外 からの 配 布 は 禁 じられている ICT a) Caption Presentation Method
1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 657 8531 1 1 E-mail: {soda,matsubara}@ws.cs.kobe-u.ac.jp, {masa-n,shinsuke,shin,yosimoto}@cs.kobe-u.ac.jp,
GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI
24 GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 1 1 1.1 GUI................................... 1 1.2 GUI.................... 1 1.2.1.......................... 1 1.2.2...........................
SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [
SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15
IP RTP 2 QoS i
17 IP A study on IP path quality forecasting from the IP path delay measurements 1060339 2006 3 10 IP RTP 2 QoS i Abstract A study on IP path quality forecasting from the IP path delay measurements Kotaro
