27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U
|
|
|
- ひろき のたけ
- 9 years ago
- Views:
Transcription
1 YouTube
2 27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM UGC UGC YouTube k-means YouTube YouTube 1
3 3 10 YouTube k-means 2
4 1 6 2 YouTube k-means YouTube
5 CCDF CCDF CCDF CCDF CCDF CCDF CCDF CCDF CCDF CCDF CCDF k-means k-means k-means Y = 3 d d = 7 Y d = 14 Y
6
7 1 YouTube[1] UGC User Generated Content OTT Over The Top (YouTube ) ISP Internet Service Provider CDN Contents Delivery Networks LRU Least Recently Used [2] UGC CGM Consumer Generated Media) CGM UGC VoD Video-on-Demand UGC [3] Digg[4] [5] YouTube 6
8 YouTube 3 [6] YouTube 1 [7] YouTube [8] Digg YouTube 30 [9] [8] x x [8] [10] YouTube [11] [12] 1 k-means YouTube [12] 1 1 k-means 7
9 1: 2 YouTube YouTube YouTube YouTube 2.1 YouTube YouTube 1 YouTube API YouTube Data API version3.0 [13] , , 900 8
10 ID YouTube API ID ID ( ID ) 1 1 YouTube API 1 1 YouTube API 1 87, YouTube [14] 1 ( 9
11 1, 000km) 30 ID ID 1 JP WestUS EastUS GB FR DE BR IN SNS Social Networking Service
12 hour 2hour 3hour 6hour CCDF e x10 6 1x10 7 View count 2: CCDF
13 day 2day 3day 7day 14day CCDF e x10 6 1x10 7 View count 3: CCDF day 2day 3day 7day 14day CCDF e x10 6 1x10 7 1x10 8 Total view count 4: CCDF 12
14 hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF e x10 6 1x10 7 View count 5: 1 CCDF hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF e x10 6 1x10 7 View count 6: 1 CCDF 13
15 hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF e x10 6 1x10 7 View count 7: 7 CCDF hour 4-7hour 8-11hour 12-15hour 16-19hour 20-23hour CCDF e x10 6 1x10 7 1x10 8 Total view count 8: 7 CCDF 14
16 CCDF WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) x10 6 View count 9: 1 CCDF CCDF WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) x10 6 View count 10: 1 CCDF 15
17 CCDF WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) x10 6 View count 11: 7 CCDF CCDF WestUS(5541) EastUS(9829) GB(4145) JP(3505) FR(5153) DE(4217) BR(2783) IN(5727) x10 6 1x10 7 Total view count 12: 7 CCDF 16
18 2.3 k-means n k-means YouTube [12] 1 k-means 1 k-means v n 0 1 n v k-means (a) (b) SNS (c) 13(a) (d) (a) 3 17
19 1 14(b) (c) (d) (a) (b) (c) (d) ,
20 Normalized view count cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) View count cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) Hour Hour after upload (a) (b) cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) cluster1 (29225) cluster2 (15564) cluster3 (17590) cluster4 (15036) cluster5 (10415) View count CCDF Day after upload 1e e+006 1e+007 View count (c) 1 (d) 7 13: k-means 19
21 Normalized view count cluster1 (25656) cluster2 (16873) cluster3 (12446) cluster4 (20304) cluster5 (12551) View count cluster1 (25656) cluster2 (16873) cluster3 (12446) cluster4 (20304) cluster5 (12551) Hour Hour after upload (a) (b) cluster1(25656) cluster2(16873) cluster3(12446) cluster4(20304) cluster5(12551) cluster1 (25656) cluster2 (16873) cluster3 (12446) cluster4 (20304) cluster5 (12551) View count CCDF Day after upload 1e e+006 1e+007 View count (c) 1 (d) 7 14: k-means 20
22 Normalized view count cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) View count cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) Hour Hour after upload (a) (b) cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) cluster1 (27234) cluster2 (12079) cluster3 (10727) cluster4 (18786) cluster5 (19004) View count CCDF Day after upload 1e e+006 1e+007 View count (c) 1 (d) 7 15: k-means 21
23 3 YouTube Y 3.1 A B P (B A) P (B A) = P (B)P (A B) P (A) n F 1,, F n C p(c F 1,, F n ) p(c F 1,, F n ) = p(c)p(f 1,, F n C) p(f 1,, F n ) C p(c, F 1,, F n ) = p(c)p(f 1 C)p(F 2 C)p(F 3 C) C classify classify(f 1,, f n ) = arg max c n p(c = c) p(f i = f i C = c) (1) i= H Y d H Y + d H Y Y Y 22
24 16: YouTube Data API 1 3. Y YouTube Data API Y d YouTube Data API Y + d Y Y d d 23
25 1: ID Y Y =H 1 2 Y =L abcdefghijk H lmnopqrstuv L wxyz H d 1 1% 2 d d 1% 3.1 n F 1,, F n 2.3 Y v Y 0 1 Y Y Y , 830 p(c = c) p(f i = f i C = c) p(c = c) p(f i = f i C = c) classify NBC: Naive Bayes Classifier VCS: View Count based Selection 24
26 Y d = 7 Y = % % 3 7 d = 14 Y = % % 3 14 Y = 3 d 1 17(a) 2 17(b) 1 2 d = 7 Y 1 18(a) 2 18(b) Y/3 25
27 2: % 2 8 1% : % % Y d = 14 Y 1 19(a) 2 19(b) d = 7 Y 3 26
28 1 0.8 Accuracy NBC VCS 21 d 28 (a) d Accuracy NBC VCS 21 d 28 (b) d 17: Y = 3 d 27
29 1 NBC VCS 0.8 Accuracy Y (hour) (a) d 1 NBC VCS 0.8 Accuracy Y (hour) (b) d 18: d = 7 Y 28
30 1 NBC VCS 0.8 Accuracy Y (hour) (a) d 1 NBC VCS 0.8 Accuracy Y (hour) (b) d 19: d = 14 Y 29
31 4 YouTube 1 k-means 3 Good 30
32 NTT 31
33 [1] YouTube. [2] N. Kamiyama, R. Kawahara, T. Mori, and H. Hasegawa, Multicast Pre-distribution VoD System, IEICE transactions on communications, vol. E96-B, pp , June [3] K. Lerman and T. Hogg, Using a Model of Social Dynamics to Predict Popularity of News, in Proceedings of the nineteenth international conference on World Wide Web, pp , Apr [4] Digg. [5] F. Figueiredo, F. Benevenuto, and J. M. Almeida, The tube over time: characterizing popularity growth of YouTube videos, in Proceedings of the fourth ACM international conference on Web search and data mining, pp , Feb [6] Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti, Characterizing and modelling popularity of user-generated videos, Performance Evaluation, vol. 68, pp , Nov [7] G. Gürsun, M. Crovella, and I. Matta, Describing and forecasting video access patterns, in Proceedings of IEEE INFOCOM, pp , Apr [8] G. Szabo and B. A. Huberman, Predicting the popularity of online content, Communications of the ACM, vol. 53, pp , Aug [9] H. Pinto, J. M. Almeida, and M. A. Gonçalves, Using early view patterns to predict the popularity of youtube videos, in Proceedings of the sixth ACM international conference on Web search and data mining, pp , Feb [10] G. Chatzopoulou, C. Sheng, and M. Faloutsos, A first step towards understanding popularity in YouTube, in Proceedings of INFOCOM IEEE Conference on Computer Communications Workshops, pp. 1 6, Mar [11] J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero, Multi-model prediction for enhancing content locality in elastic server infrastructures, in Proceedings of the 32
34 eighteenth International Conference on High Performance Computing, pp. 1 9, Dec [12] Y. Kitade, Analyzing popularity dynamics of YouTube content and its application to content cache design, Master s thesis, Graduate School of Information Science and Technology, Osaka University, Feb [13] YouTube Data API. [14] YouTube Help. 33
CSIS (No.324) {kazuya-o, okuda, 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geograp
CSIS (No.324) {kazuya-o, okuda, suguru}@is.naist.jp 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geographically Aggregatable Location-based Multicast Address)
IPSJ SIG Technical Report Vol.2015-GN-93 No.29 Vol.2015-CDS-12 No.29 Vol.2015-DCC-9 No /1/27 1,a) 1 1 LAN IP 1), 2), 3), 4), 5) [
1,a) 1 1 LAN IP 1), 2), 3), 4), 5) 1. 2011 50 60 [14] [14] 1 NTT 3-4-1 Shibaura, Minato-ku, Tokyo 108-8118, Japan a) [email protected] Web P2P(Peer to Peer) P2P [19] 1 World Wide Web Consortium( W3C)
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2
DEIM Forum 2013 B10-4 Web Index 223-8522 3-14-1 E-mail: [email protected], [email protected], URL WIX, Web Web Index(WIX). WIX, WIX.,,. Web Index, Web, Web,, Related Contents Recommendation
1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: [email protected], {ide,murase,hirayama}@is.nagoya-u.ac.jp,
& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us
1,a) 1 1 1 1 2 2 2011 8 10, 2011 12 2 1 Bluetooth 36 2 3 10 70 34 A Health Management Service by Cell Phones and Its Usability Evaluation Naofumi Yoshida 1,a) Daigo Matsubara 1 Naoki Ishibashi 1 Nobuo
23
Master's Thesis / 修 士 論 文 映 像 配 信 の 中 断 から 復 旧 までの 時 間 を 短 縮 するネットワーク 再 構 築 手 法 の 改 良 隅 田, 貴 久 三 重 大 学, 2011. 三 重 大 学 大 学 院 地 域 イノベーション 学 研 究 科 博 士 前 期 課 程 地 域 イノベーション 学 専 攻 http://hdl.handle.net/10076/12400
IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)
1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) [email protected] b) [email protected] c) [email protected] / 2. Apple iphoto Google Picasa GPS GPS GPS [1][2]
¥ì¥·¥Ô¤Î¸À¸ì½èÍý¤Î¸½¾õ
2013 8 18 Table of Contents = + 1. 2. 3. 4. 5. etc. 1. ( + + ( )) 2. :,,,,,, (MUC 1 ) 3. 4. (subj: person, i-obj: org. ) 1 Message Understanding Conference ( ) UGC 2 ( ) : : 2 User-Generated Content [
IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info
1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3
Run-Based Trieから構成される 決定木の枝刈り法
Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network
2
2 485 1300 1 6 17 18 3 18 18 3 17 () 6 1 2 3 4 1 18 11 27 10001200 705 2 18 12 27 10001230 705 3 19 2 5 10001140 302 5 () 6 280 2 7 ACCESS WEB 8 9 10 11 12 13 14 3 A B C D E 1 Data 13 12 Data 15 9 18 2
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
極地研 no174.indd
C O N T E N T S 02 10 13 no.174 June.2005 TOPICS06 1 45 46 3 12 4546 47 14 10 15 15 16 NEWS no.174 june.2005 0 100 200 300 400 500 600 700 100 100 Diameter,nm 10 10 45 20042 Feb Mar Apr May Jun Jul Aug
IPSJ SIG Technical Report Vol.2013-CE-122 No.16 Vol.2013-CLE-11 No /12/14 Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(I
Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(Information and Communication Technology) (Google [2] [5] ) 2. Google 2.1 Google Google [2]( 1) Google Web, Google Web Google Chrome
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation
ActionScript Flash Player 8 ActionScript3.0 ActionScript Flash Video ActionScript.swf swf FlashPlayer AVM(Actionscript Virtual Machine) Windows
ActionScript3.0 1 1 YouTube Flash ActionScript3.0 Face detection and hiding using ActionScript3.0 for streaming video on the Internet Ryouta Tanaka 1 and Masanao Koeda 1 Recently, video streaming and video
( )
NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya
シリコンバレーとルート128における地域産業システムのその後の展開―経営学輪講 Saxenian (1994)
ISSN 1347-4448 ISSN 1348-5504 8 3 (2009 3 ) 128 * Saxenian (1994) Saxenian, A. (1994). Regional advantage: Culture and competition in Silicon Valley and Route 128. Cambridge, MA: Harvard University Press.
DEIM Forum 2012 E Web Extracting Modification of Objec
DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: [email protected], {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke
IPSJ SIG Technical Report Vol.2017-HCI-173 No.5 Vol.2017-EC-44 No /6/1 1,a) 1,2,b) 3,c) 1,d) 3D * 1* Graduate School of Engineerin
1,a) 1,2,b) 3,c) 1,d) 3D 1. 2.5 * 1*2 2.5 1 Graduate School of Engineering, Kobe University 2 PRESTO, Japan Science and Technology Agency 3 School of Information Science and Engineering, Ritsumeikan University
Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) 2 3 4 5 6 2. Vocaloid2 2006 1 PV 2009 1 1100 200 YouTube 1 minato minato ussy 3D MAD F EDis ussy
1, 2 3 1, 2 Web Fischer Social Creativity 1) Social Creativity CG Network Analysis of an Emergent Massively Collaborative Creation Community Masahiro Hamasaki, 1, 2 Hideaki Takeda 3 and Takuichi Nishimura
1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +
3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows
Web
2013 10H118 1 1 2 2 3 3 3.1............................................ 3 3.2 Web................................... 7 3.3................................................. 10 4 12 5 13 1 *1 [1 18] IT *2
HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus
HASC2012corpus 1 1 1 1 1 1 2 2 3 4 5 6 7 HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus: Human Activity Corpus and Its Application Nobuo KAWAGUCHI,
[9]SNS SNS SNS Twitter SNS SIR Twitter SNS Twitter Twitter Twitter Huberman [5] Akioka Twitter []Akioka Twitter Twitter Twitter Kawk Twitter
Twitter Estimation of alse Rumor Diffusion Model and Prevention Model of alse Rumor Diffusion on Twitter 5 6 7 7,8 Takashi Shirai, Takeshi Sakaki, ujio Toriumi, Kosuke Shinoda, Kazuhiro Kazama 5, Itsuki
WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i
26 WebRTC The data distribution system using browser cache sharing and WebRTC 1150361 2015/02/27 WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i Abstract The data distribution
ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc
VOL. J98-A NO. 1 JANUARY 2015 本 PDFの 扱 いは 電 子 情 報 通 信 学 会 著 作 権 規 定 に 従 うこと なお 本 PDFは 研 究 教 育 目 的 ( 非 営 利 )に 限 り 著 者 が 第 三 者 に 直 接 配 布 すること ができる 著 者 以 外 からの 配 布 は 禁 じられている ICT a) Caption Presentation Method
BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO
DEIM Forum 2012 C8-5 WikiBOK 252 5258 5 10 1 E-mail: [email protected], {kaz,masunaga}@si.aoyama.ac.jp, {yabuki,sakuta}@it.aoyama.ac.jp Body Of Knowledge, BOK BOK BOK BOK BOK, BOK Abstract Extention
求人面接資料PPT
Hair Salon TV etc. 250" 250" 200" 200" 150" 150" 100" 100" 50" 50" 0" 0" Nov)13" Dec)13" Jan)14" Feb)14" Mar)14" Apr)14" May)14" Jun)14" Jul)14" Dec)12" Jan)13" Feb)13" Mar)13" Apr)13"
xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL
PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP
IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo
1 1 2 3 4 5 1 1, 6 Construction and Operation of Large Scale Web Contents Distribution Platform using Cloud Computing 1. ( ) 1 IT Web Yoshihiro Okamoto, 1 Naomi Terada and Tomohisa Akafuji, 1, 2 Yuko Okamoto,
YouTube [7] A B [8] [8] YouTube () ( ) YouTube YouTube 3. 3. 1 YouTube 3. 1. 1 YouTube Data API [6] ( 1) 2011 12 2012 1 ( ) YouTube ( 1 YouTube ) 2011
DEIM Forum 2012 B4-1 700 8530 3-1-1 700 8530 3-1-1 E-mail:, {yoshio,ohta}@de.cs.okayama-u.ac.jp YouTube YouTube ( ) YouTube A recommendation system for unexpected videos using user connections Toru YOSHIO
2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,
DEIM Forum 2016 E1-4 525-8577 1 1-1 E-mail: [email protected], [email protected], [email protected] 373 1.,, itunes Store 1, Web,., 4,300., [1], [2] [3],,, [4], ( ) [3], [5].,,.,,,,
スライド 1
JANOG 14 2004.07.23 NTT [email protected] 1 Peer-to-Peer ISP P2P AS / Copyright 2004 NTT Corporation, All Rights Reserved 2 Peer-to-Peer ISP P2P AS Copyright 2004 NTT Corporation, All Rights
[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So
1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:
