<4D F736F F D2088E293608E71836C F815B834E89C28E8B89BB2E646F63>

Size: px
Start display at page:

Download "<4D6963726F736F667420576F7264202D2088E293608E71836C83628367838F815B834E89C28E8B89BB2E646F63>"

Transcription

1 西 山 慧 子 * 伊 藤 貴 之 ** (*) お 茶 の 水 女 子 大 学 大 学 院 人 間 文 化 研 究 科 (**) お 茶 の 水 女 子 大 学 理 学 部 情 報 科 学 科 {nishy, itot}@itol.is.ocha.ac.jp 1. NA [1] A B C E F B,E 1 A, 1 A,B,E B E C,F 1 1 A 2 3 C,F A C F

2 {B,E},{},{C,F} 3 A 2 1 A B E C,F [2] [3] [4] (tree) Hyperbolic Tree[5] Cone Tree[6] 3

3 Tree-Maps[7] 2 3 [8] 2 [9] [10] [11] [12] 3 [13] (1) (2) (1) [13] (2) 3 GUI M N 4 m 種 類 の n 個 の 遺 伝 子 のうち マイクロアレイ 発 現 率 傾 向 の 近 いもの データ 要 素 と 階 層 n 個 の ネットワーク 遺 伝 子 マトリクス 型 データ 階 層 型 データ 4 Cluster 3.0[14] 5( ) k 1 k 9 5( ) S 1,S 2 2

4 5( ) 2 nodea, nodeb m nodea A={a 1, a 2,...a m } nodeb B={b 1, b 2,...b m } nodea node r r d d d = 1.0 (1) max A,B 2 m ( ai bi i= 1 = ) 2 (2) max d Cluster3.0[14] 8 S2 k1 k4 7 6 k2 k5 5. ( )( ) 5 k3 4 S k8 k6 k9 k1 k2 k3 k4 k5 k6 k7 k8 k9 0 1 rij k7 r

5 マルチドメインの可能性のある遺伝子同士が複雑に絡み合 ったネットワークである といえる 図 7,8 は 本手法により 注視ノードと相関性の高いノー ドを 3 次元的に引き上げた結果画像である 図 8(左)の注視ノ ードを引き上げていない画像では どのノードが注視ノード とエッジ連結されているのか 一目には理解しにくい それ に対して図 8(右)では 注視ノードを引き上げることにより 注視ノードとエッジで連結されたノードを一目瞭然に発見で きる これらの結果画像より ネットワークの注視部分を 3 次元的に引き上げることにより ノード間の連結関係が理解 しやすくなると言える 図 6 本報告を用いた 注視ノードが一つの実行例 4.2 既存ソフトウェアとの比較 図 9 平安京ビューにおける表示結果 図 7 注視ノードを1段階引き上げた表示画像 マイクロアレイデータから得られる遺伝子発現率情報の可 視化ソフトウェアの中の多くは ノード間の相互関係をエッ ジで結ぶ古典的なネットワーク 2 次元可視化手法や TreeView[15]と呼ばれるクラスタリング結果の可視化手法を 搭載しており 遺伝子分析に携わる多くの研究者がこれらを 利用している 以下 これらの手法に対する提案手法の優位 性について論じる まず前者の方法では 発現率の相関性の高いノードをエッ ジで結んで表示する事から 遺伝子間の関連性は一目瞭然で ある しかし 一画面に表示するノード数は数十 数百程度 に留まっている またクラスタリング結果を同時に表示して はいない それに対して本手法 図 9 参照 には 図 8 左 注視ノードを引き上げてない結果画像 右 注視ノードを引き上げた結果画像 整然と構造化された形で遺伝子群を表示する 数千 数万といった膨大な量の遺伝子の分布の全貌を 一画面に一括表示できる また 図 6 を詳しく調べてみると 所定の色 紫 で表示 されたノードを両端とするエッジが多く存在していること が解る このことより 図 6 に示す遺伝子ネットワークは といった点で利点があると考えられる 続いて後者の TreeView は N個の遺伝子に関する発現率を N N のマトリクスデータとして表現する この手法は全ての

6 Cluster 3.0 Michael e Hoon [1], Genetic Networks and Probilistic Models, 2001, pp , [2] Itoh T., Takakura H., Sawada A., and Koyamada K., Hierarchical Visualization of Network Intrusion etection ata in the IP Address Space, IEEE Computer Graphics and Applications, Vol. 26, No. 2, pp , [3] Mukherjea, S., J. Foley and S. Hudson, Visualizing Complex Hypermedia Networks through Multiple Hierarchical Views, Proceedings of ACM SIGCHI '95, enver, Colorado, pp , May [4] Eades, P., "A Heuristic for Graph rawing," Congressus Numerantium, Vol. 42, pp , [5] Lamping, J. and Rao, R., "The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies," Journal of Visual Languages and Computing, Vol. 7, No. 1, pp , [6] J. Carrire and R. Kazman, "Research Report: Interacting with Huge Hierarchies: Beyond Cone Trees," Proceedings of the IEEE Conference on Information Visualization '95, IEEE CS Press, pp , [7] B. Johnson, et al., Tree-Maps: A Space-Filing Approach to the Visualization of Hierarchical Information Space, IEEE Visualization 91, pp , [8] P. Eades, et al., Multilevel Visualization of Clustered Graphs, Graph rawing 96, pp , [9]. Schaffer, et al., Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods, ACM Trans. Computer-Human Interaction, Vol. 3, No. 2, pp , [10] M. Sarcar, M. H. Brown, Graphical Fisheyes Views of Graphs, Communication of the ACM, Vol. 37, pp , March [11] M. L. Huang, et al., WebOFAV Navigatingand Visualizing the Web On-Line with Animated Context Swapping, 7th WWW Conf, pp , [12] S. North, Incremental Layout in ynaag, Graph rawing 95, pp , [13],,, Vol. 38, No. 11, pp , [14] Open Source Clustering Software (Cluster 3.0), [15] TreeView,

Microsoft Word - GraphLayout1-Journal-ver2.doc

Microsoft Word - GraphLayout1-Journal-ver2.doc ÕÒÖÎ ÆÉ ÐÖÔÒ Ñ ˆ e Ê j ÉÏÏÔÐÏÒuu ËÊ o y * ÎÏ Ó ÏÕ( ) (* É ) An Improvement of Force-directed Hierarchical Graph Layout And Its Application to Web Site Visualization Jun DOI Takayuki ITOH IBM Research,

More information

1 5 1.1.............................. 5 1.2............................ 5 1.3........................... 6 2 7 2.1.......................... 7 2.2 WWW

1 5 1.1.............................. 5 1.2............................ 5 1.3........................... 6 2 7 2.1.......................... 7 2.2 WWW 2004 Web WWW(World Wide Web) 2005 2 2 1G01P031-4 1 5 1.1.............................. 5 1.2............................ 5 1.3........................... 6 2 7 2.1.......................... 7 2.2 WWW...................

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 24 GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 1 1 1.1 GUI................................... 1 1.2 GUI.................... 1 1.2.1.......................... 1 1.2.2...........................

More information

1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search

1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search DEIM Forum 2013 D2-1 112 8610 2-1-1 E-mail: {aco,itot}@itolab.is.ocha.ac.jp, [email protected] Exploratory Search A product Search System for women adjusting amount of browsed items Abstract Eriko KOIKE,

More information

BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO

BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO DEIM Forum 2012 C8-5 WikiBOK 252 5258 5 10 1 E-mail: [email protected], {kaz,masunaga}@si.aoyama.ac.jp, {yabuki,sakuta}@it.aoyama.ac.jp Body Of Knowledge, BOK BOK BOK BOK BOK, BOK Abstract Extention

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) [email protected] b) [email protected] c) [email protected] / 2. Apple iphoto Google Picasa GPS GPS GPS [1][2]

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1] PLUM [2] LifelogViewer 3 1 Apple iphoto, 2 Goo

2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1]  PLUM [2] LifelogViewer 3 1 Apple iphoto,   2 Goo DEIM Forum 2012 D9-4 606 8501 E-mail: {sasage,tsukuda,nakamura,tanaka}@dl.kuis.kyoto-u.ac.jp,,,, 1. 2000 1 20 10 GPS A A A A A A A 2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1] Email PLUM

More information

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community

More information

SEM44-西堀ゆり.indd

SEM44-西堀ゆり.indd 1.はじめに: 激 変 する 英 語 と 情 報 コミュニケーション ICT Information & Communications Technology: 1 2008 EFL: English as a Foreign Language 2001 2 199 3 200 2. 協 調 場 と NBLT(Network-based Language Teaching) 201 e- e- 1990

More information

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int SOA 1 1 1 1 (HNS) HNS SOA SOA 3 3 A Service-Oriented Platform for Feature Interaction Detection and Resolution in Home Network System Yuhei Yoshimura, 1 Takuya Inada Hiroshi Igaki 1, 1 and Masahide Nakamura

More information

スライド 1

スライド 1 JANOG 14 2004.07.23 NTT [email protected] 1 Peer-to-Peer ISP P2P AS / Copyright 2004 NTT Corporation, All Rights Reserved 2 Peer-to-Peer ISP P2P AS Copyright 2004 NTT Corporation, All Rights

More information

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 657 8531 1 1 E-mail: {soda,matsubara}@ws.cs.kobe-u.ac.jp, {masa-n,shinsuke,shin,yosimoto}@cs.kobe-u.ac.jp,

More information

Microsoft Office[1] Adobe Photoshop[2] Google Document[3] [4] [5] [6] Microsoft Office Adobe Photoshop [7]TRIBASE [8] GUI Amulet[9] [10

Microsoft Office[1] Adobe Photoshop[2] Google Document[3] [4] [5] [6] Microsoft Office Adobe Photoshop [7]TRIBASE [8] GUI Amulet[9] [10 1 1 1,2 1 GUI Design and Implementation of a Mechanism for Visualizing Undo Operations Based on Changes of Desktop Screen Arisa Sakamoto 1 Takuya Katayama 1 Tsutomu Terada 1,2 Masahiko Tsukamoto 1 Abstract:

More information

CSIS (No.324) {kazuya-o, okuda, 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geograp

CSIS (No.324) {kazuya-o, okuda, 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geograp CSIS (No.324) {kazuya-o, okuda, suguru}@is.naist.jp 2012 IP (LBM) IPv6 GALMA LBM GALMA GALMA 1 (LBM:Location Based Multicast) LBM IP IP GALMA (Geographically Aggregatable Location-based Multicast Address)

More information

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root 1,a) 2 2 1. 1 College of Information Science, School of Informatics, University of Tsukuba 2 Faculty of Engineering, Information and Systems, University of Tsukuba a) [email protected] 2.

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, [email protected], [email protected],

More information

,, Web,,,,, 3 Web,,,,,,,,,, Web,, Web, Web,,,, Web,,,,,,,,,,

,, Web,,,,, 3 Web,,,,,,,,,, Web,, Web, Web,,,, Web,,,,,,,,,, Web ( ) 2008 3 ,, Web,,,,, 3 Web,,,,,,,,,, Web,, Web, Web,,,, Web,,,,,,,,,, 1 1 11 2 2 3 21 3 22 4 23 5 3 6 31 6 311 7 312 7 313 8 314 9 315 10 32 10 33 11 34 12 341 12 342 13 35 13 4 15 41 15 411 15 412

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

3 ColorWave ColorWave ( ) ColorWave 3

3 ColorWave ColorWave ( ) ColorWave 3 21 3 ColorWave ColorWave ( ) ColorWave 3 1 1 1.1....................... 1 1.2...................................... 1 1.2.1.............................. 2.......................... 2...............................

More information

Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3 36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there

More information

main.dvi

main.dvi 305 8550 1 2 CREST [email protected] 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2

More information

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho Haiku Generation Based on Motif Images Using Deep Learning 1 2 2 2 Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura 2 1 1 School of Engineering Hokkaido University 2 2 Graduate

More information

( )

( ) ( ) 2009 3 MixVis MixVis ( ) MixVis MixVis MixVis 1 1 1.1............................. 1 1.2 (SNA)....................... 1 1.3....................... 2 1.4................................... 3 1.5...................................

More information

2

2 Copyright 2008 Nara Institute of Science and Technology / Osaka University 2 Copyright 2008 Nara Institute of Science and Technology / Osaka University CHAOS Report in US 1994 http://www.standishgroup.com/sample_research/

More information

A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹

A Japanese Word Dependency Corpus   ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹ A Japanese Word Dependency Corpus 2015 3 18 Special thanks to NTT CS, 1 /27 Bunsetsu? What is it? ( ) Cf. CoNLL Multilingual Dependency Parsing [Buchholz+ 2006] (, Penn Treebank [Marcus 93]) 2 /27 1. 2.

More information

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. 1. 2. 3. 16 17 18 ( ) ( 19 ( ) CG PC 20 ) I want some rice. I want some lice. 21 22 23 24 2001 9 18 3 2000 4 21 3,. 13,. Science/Technology, Design, Experiments,

More information

Vol. 28 No. 2 Apr. 2011 173 1. 1 Web Twitter/Facebook UI 4 1. 2. 3. 4. Twitter Web Twitter/Facebook e.g., Web Web UI 1 2 SNS 1, 2 2

Vol. 28 No. 2 Apr. 2011 173 1. 1 Web Twitter/Facebook UI 4 1. 2. 3. 4. Twitter Web Twitter/Facebook e.g., Web Web UI 1 2 SNS 1, 2 2 172 SNS Web Web As social web sites such as blog and SNS(Social Network System) became popular, many people have communicated with their friends on the Web. Meanwhile, several problems of social web sites

More information