(Jackson model) Ziman) (fluidity) (viscosity) (Free v
|
|
|
- えつみ くだら
- 7 years ago
- Views:
Transcription
1 1) ) [email protected]
2 (Jackson model) Ziman) (fluidity) (viscosity) (Free volume)( 0.1 ) (random structure) 12 ( (short range order) ) (random close-packed) Bernal
3 Metal Shrinkage [%] Fe 4.0 Al 6.6 Cu 4.9 Mg 4.2 Flemings, Appendix B). Temperature: T time:t (melting temperature: ) (super cooling or under cooling) (heat of fusion, latent heat: H m ) 0.2 G L G S 2
4 4 Free energy: G G L G S Temperature: T 0.2 G = 0 G = G S G L G = G S G L = H T S (1) H S T H m = H L H S = H T = G = 0 S = H m (2) S, H m G = H m + T H m = H m T (3) S f 2ncal/K/mol 8.4nJ/K/mol (Richards rule) n 1 NaCl n = 2 (9 11J/K/n-mol)
5 e -10 G * r * 5e -07 Gsurface r -4e -10 Gtotal Gvolume 0.3 ( 14J/K/n-mol) ( 30 J/K/n-mol) (homogeneous nucleation) σ (driving force) r G = G v 4πr 3 /3 + 4πr 2 σ (4) 0.3 (critical radius) r dg/dr = 0 r = 2σ G v = 2σ H m T (5) (3) (energy barrier or activation barrier G ) G = 16π 3 σ 3 G 2 v = 16π 3 σ 3 T 2 m (H m T ) 2 (6) Cu Cu 1356
6 erg/cm erg/cm K (over heating) I Z N n I = N nz (7) ) Nn exp ( G kt G d ( ) I exp ( G + G d ) kt exp ( 1/T T 2) exp ( 1/T ) TTT (Time- Temperature-Transformation diagram) 0.4 (amorphous) (8) (9) (inhomogeneous nucleation) 0.5 (substrate:s) (crystal:c) (liquid:l) (contact angle)θ
7 Temperature: T time: t 0.4 TTT liquid σ ls σ lc θ crystal σ cs substrate 0.5
8 8 σ ls = σ cs + cos θσ lc (10) G hetero = G homo f(θ) = ( G v 4πr 3 /3 + 4πr 2 σ lc ) 2 3 cos θ + cos 3 θ 4 (11) (Appendix ) θ (wet) ( Si ) (inoculation) (Jackson model) smooth surface facet rough surface non-facet Jackson N N A one layer Z S ( N NA N ) Z S (12) N A ɛ ( H = N A 1 N ) A Z s ɛ (13) N
9 α= α= γ α=2 α=1 0.6 N N A W = N! N A!(N N A )! (14) S = k B ln W (Stirling s approximation) ln N! = N ln N N γ = N A /N S = k B N {(1 γ) ln(1 γ) + γ ln γ} (15) Z c L 0 L 0 = Z c ɛ (16) G Nk B = αγ(1 γ) + {(1 γ) ln(1 γ) + γ ln γ} (17) α = L 0 k B Z s Z c (18) α 0.6 α 2
10 System Orientation fcc < 100 > bcc < 100 > hcp < > bct < 110 > diamond < 112 > Chalmers) 0.2 KurzFisher) W. Kurz and D. J. Fisher, Fundamentals of Solidification, Trans Tech Publications, 1984, Switzerland. Chalmers) Bruce Chalmers, Principles of Solidification, John Wiley & Sons, Inc., 1964, New York Flemings) Merton C. Flemings, Solidification Processing, McGraw-Hill, 1974, New York. Ziman) J. M. Ziman, Models of disorder, Cambridge University Press, A G interface = A lc σ lc + A cs σ cs A cs σ ls (19) G interface = A lc σ lc + πr 2 (σ cs σ ls ) (20) R = r sin θ σ lc = σ cs + σ ls cos θ (21)
11 G interface = A lc σ lc πr 2 cos θσ ls (22) G interface = G volume + G interface = v c G v + (A lc πr 2 cos θ)σ ls v c (23) v c = πr3 (2 3 cos θ + cos 3 θ) 3 (24) A lc = 2πr 2 (1 cos θ) (25) G hetero = G homo f(θ) = ( G v 4πr 3 /3 + 4πr 2 σ lc ) 2 3 cos θ + cos 3 θ 4 (26) f(θ) = 2 3 cos θ + cos3 θ 4 = (2 + cos θ)(1 cos θ)2 4 (27)
知能科学:ニューラルネットワーク
2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,
lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d
lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3
1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................
2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................
19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional
19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e
1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)
1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )
薄膜結晶成長の基礎3.dvi
3 464-8602 1 [1] 2 3 (epitaxy) (homoepitaxy) (heteroepitaxy) 1 Makio Uwaha. E-mail:[email protected]; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 3.1 [2] (strain) r u(r) ɛ αγ (r) = 1 ( uα + u ) γ (3.1) 2
[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3
4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1
1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
薄膜結晶成長の基礎2.dvi
2 464-8602 1 2 2 2 N ΔμN ( N 2/3 ) N - (seed) (nucleation) 1.4 2 2.1 1 Makio Uwaha. E-mail:[email protected]; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 [1] [2] [3](e) 3 2.1: [1] 2.1 ( ) 1 (cluster) ( N
80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0
79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t
B
B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T
untitled
(a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110
II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R
II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =
I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co
16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =
3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u
* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *
* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m
1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h
IB IIA 1 1 r, θ, φ 1 (r, θ, φ)., r, θ, φ 0 r
2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)
1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a
main.dvi
5 IIR IIR z 5.1 5.1.1 1. 2. IIR(Infinite Impulse Response) FIR(Finite Impulse Response) 3. 4. 5. 5.1.2 IIR FIR 5.1 5.1 5.2 104 5. IIR 5.1 IIR FIR IIR FIR H(z) = a 0 +a 1 z 1 +a 2 z 2 1+b 1 z 1 +b 2 z 2
SMM_02_Solidification
第 2 章凝固に伴う組織形成 3 回生 金属材料学 凝固に伴う組織形成 2.1. 現実の凝固組織この章では 図 1.3に示したような一般的なバルク金属材料の製造工程において最初に行われる鋳造プロセスに伴い生じる凝固組織を考える 凝固 (solidification) とは 液体金属が固体になる相変態 (phase transformation) のことであり 当然それに伴い固体の材料組織が形成される
温泉の化学 1
H O 1,003 516 149 124 2,237 1974 90 110 1km 2,400 ( 100 Mg 200 (98 ) 43,665 mg 38,695 mg 19,000 mg 2000 2000 Na-Ca-Cl 806 1970 1989 10 1991 4 ph 1 981 10,000 1993... (^^; (SO_4^{2-}) " " 1973-1987 1970
Gmech08.dvi
51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)
8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b) X hkl 2θ ω 000 2: ω X 2θ X 3: X 2 X ω X 2θ X θ-2θ X X 2-1. ( ) ( 3) X 2θ ω 4 Si GaAs Si/Si GaAs/GaAs X 2θ : 2 2θ 000 ω 000 ω ω = θ 4: 2θ ω
第14章 ステレオグラフ
Stereographic Projection spherical projection 1 1 O great circle small circle pole Z = zenith A stereographic projection O primitive circle C D S C lower hemisphere = nadia 1 Z θ 3 P O P P r tan θ 3 P
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,
65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n
003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........
春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,
春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an
85 4
85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )
n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)
23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
36 th IChO : - 3 ( ) , G O O D L U C K final 1
36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
4/15 No.
4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem
SMM_02_Solidification
第 2 章凝固に伴う組織形成 3 回生 金属材料学 凝固に伴う組織形成 2.1. 現実の凝固組織この章では 図 1.3に示したような一般的なバルク金属材料の製造工程において最初に行われる鋳造プロセスに伴い生じる凝固組織を考える 凝固 (solidification) とは 液体金属が固体になる相変態 (phase transformation) のことであり 当然それに伴い固体の材料組織が形成される
ëoã…éqä‘ëäå›çÏóp.pdf
1 2 1.1 2 1.2 4 1.3 10 1.4 13 2 14 2.1 16 2.1.a 1 16 2.1.b 18 2.1.c 2 20 2.1.d 24 2.1.e 24 2.1.f 25 2.2 Scheffler 25 2.3 Person Ryberg - 1 27 2.4 Person Ryberg - 2 Coherent Potential Approximation 31 2.5
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
Microsoft PowerPoint - ‚æ5‘Í [„Ý−·…‡†[…h]
第 5 章核生成と相形態 目的 相変化時の核生成の基本を理解するとともに, 相形状が種々異なる理由を物理的観点から認識する. 5.1 核生成と成長 5.1.1 均一核生成 5.1. 不均一核生成 5.1.3 凝固 相変態 5.1.4 TTT 線図 5. 相形態 5..1 界面エネルギーと相形態 5.. 組織成長 演習問題 5.1 核生成と凝固 5.1.1 均一核生成 (homogeneous nucleation)
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like
() 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)
微粒子合成化学・講義
http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: [email protected] 1 2 3 1m 10cm 1cm 1mm 100 m 10 m 1 m 100nm 10nm 1nm 1 100 m 10 m 1 m 1nm 100nm 10nm 4 5 6 7 1m 10cm 1cm 1mm 100
, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n
( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally
