HTM RaR HTM 2. 2) 3) HTM 2 3 Yoo 4) HTM Adaptive Transaction Scheduling Akpinar 5) HTM Gaona 6) HTM 3. Read-after-Read HTM 3.1 Read-after-Read Read Wr
|
|
|
- たけなり あると
- 7 years ago
- Views:
Transcription
1 1 1, Readafter-Read Read-after-Read 66.9% A Speed-Up Technique for Hardware Transactional Memories by Reducing Concurrency Considering Conflicting Addresses Koshiro Hashimoto, 1 Masamichi Eto, 1, 1 Shoichiro Horiba, 1 Tomoaki Tsumura 1 and Hiroshi Matsuo 1 Lock-based thread synchronization techniques are commonly used in parallel programming on multi-core processors. However, lock can cause deadlocks and poor scalabilities. Hence, Transactional Memory (TM) has been proposed and studied for lock-free synchronization. On TM, transactions are executed speculatively unless a memory access conflict is caused, hence the performance of TM is generally better than that of lock. However, if speculative execution is continued when a Read-after-Read (RaR) access occurs, following stalls can be wasted. In this paper, we propose a speed-up technique by reducing concurrency considering conflicting addresses. The result of the experiment shows that proposed method improves the performance 66.9% in maximum. 1. Transactional Memory: TM 1) TM 1 Nagoya Institute of Technology 1 Presently with Central Japan Railway Company TM Hardware Transactional Memory: HTM HTM Read Read Read-after-Read RaR c 2013 Information Processing Society of Japan 162
2 HTM RaR HTM 2. 2) 3) HTM 2 3 Yoo 4) HTM Adaptive Transaction Scheduling Akpinar 5) HTM Gaona 6) HTM 3. Read-after-Read HTM 3.1 Read-after-Read Read Write Test-and-Set Write Read Read Write 1 Abort NACK ACK NACK stall Futile Stall Read-after-Read Futile Stall 1 2 LogTM 7) eager conflict detection HTM NACK NACK Futile Stall HTM 3.2 Read-after-Read Futile Stall Futile Stall Write Read Read Write Read RaR RaR Read Read 2 c 2013 Information Processing Society of Japan 163
3 t4 t5 t6 t7 t8 2 ing stall NACK Wakeup Wakeup NACK ACK Core3 Thread3 ing Abort RaR Futile Stall 3 3 Thread3 RaR t4 Thread3 A Write 1 Futile Stall Futile Stall Thread3 Wakeup 2 t5 Thread3 Wakeup Thread3 t6 t7 2 t5 A Thread3 t8 Read Wakeup 2 Thread3 2 Thread3 Read Thread3 RaR Register for RaR addresses RaR-addr. : Read Write Queue for order of resumption O-que. : RaR RaR-addr. Read. Register for resumption R-res. : RaR Read Write RaR-addr. Read RaR-addr. RaR Read O-que. RaR O-que. R-res. c 2013 Information Processing Society of Japan 164
4 t4 stall Nack Nack A Nack Abort A Nack Core3 Thread3 Abort Cache () Registration Registration R W addr () Check 1 0 A read bit 0 0 (t4) Check read bit Cache (Core3) R W addr 1 0 A RaR RaR-addr. R-res. 4.2 Read-after-Read RaR RaR-addr RaR-addr. Write-after-Read WaR Thread3 NACK Thread3 WaR Thread3 A R t4 R HTM Read R Thread3 Write A Read A RaR-addr RaR-addr RaR-addr. RaR Read RaR-addr. 4 RaR-addr. A A RaR-addr. A RaR-addr. A Read Read Write A Read RaR Wakeup Thread3 Thread3 RaR t RaR-addr. RaR-addr. 4.1 RaR-addr. Read Write 1 Read Wrire RaR-addr. N N bit 128bit 256bit byte 512byte 1Kbyte c 2013 Information Processing Society of Japan 165
5 t4 4 ing A Core3 Thread3 A ing RaR-addr. RaR FIFO RaRaddr. RaR RaR Thread3 RaR Read O-que. RaR R-res. Thread3 RaR O-que. Thread3 Thread3 R-res. O-que. R-res. O- que. O-que. 1 3 O-que 1 Wakeup t5 Wakeup R-res. 2 ted t7 t8 (t6) R-res. 2 O-que. t4 t5 t6 5 ing (t5) 1 3 Wakeup ted (t7) Wakeup Core3 Thread3 (t8) 2 ted ing t6 ted O-que. 3 Thread3 Wakeup t7 Wakeup Thread3 Thread3 R-res. ted t8 ted O-que. O-que. O-que. R-res bit O-que. 4bit 31 4bit bytes HTM LogTM 7) Simics 8) GEMS 9) Simics c 2013 Information Processing Society of Japan 166
6 1 Processor SPARC V9 #cores 32 cores clock 1 GHz issue width single issue order in-order non-memory IPC 1 D1 cache 32 KBytes ways 4 ways latency 1 cycle D2 cache 8 MBytes ways 8 ways latency 20 cycles Memory 8 GBytes latency 450 cycles Interconnect network latency 14 cycles 2 GEMS SPLASH-2 STAMP All (R 1) 29.2% 19.1% 4.9% 22.6% 66.9% 39.9% 9.3% 66.9% (R 2) 29.3% 19.9% 5.2% 23.0% 66.9% 41.5% 9.9% 66.9% (R 4) 29.5% 19.9% 5.0% 23.1% 66.9% 41.1% 9.3% 66.9% (R ) 29.8% 22.4% 4.7% 24.0% 66.9% 40.9% 8.8% 66.9% GEMS 32 SPARC V9 OS Solaris 10 1 GEMS microbench SPLASH-2 STAMP 10 STAMP 2 Gramoli 10) Non trans Good trans Bad trans Aborting Backoff Stall Barrier Magicing 5 (B) LogTM (R 1) RaR-addr. 1 (R 2) RaR-addr. 2 (R 4) RaR-addr. 4 (R ) LogTM B 1 R 1 R RaRaddr. Read Write 11) 10 95% Write Read Futile Stall Futile Stall Btree B RaR-addr. R 1 R 1 R % 66.9% 5.3 GEMS microbench GEMS microbench Deque Prioque Backoff Read Write R 1 Futile Stall Backoff Btree Btree 2 Tx.I Tx.J Tx.I Read Write Tx.J Write Read Tx.I Tx.I Tx.J c 2013 Information Processing Society of Japan 167
7 Ratio of cycles (B)conventional LogTM (baseline) (R1)RaR-access Detection (N = 1) (R2)RaR-access Detection (N = 2) (R4)RaR-access Detection (N = 4) (R )RaR-access Detection Magicing Barrier Stall Backoff Aborting Bad_trans Good_trans Non_trans GEMS microbench SPLASH-2 STAMP 6 Tx.J Write Read Btree SPLASH-2 SPLASH-2 Raytrace Backoff Raytrace Read Write 3 Futile Stall Futile Stall Backoff Cholesky Barrier Futile Stall Radiosity Read Write RaR-addr. RaR Radiosity RaR-addr. STAMP STAMP Kmeans Kmeans Read Write Kmeans Futile Stall RaR-addr. 1 c 2013 Information Processing Society of Japan 168
8 3 R 1 RaR-addr. GEMS R 1 SPLASH-2 R 1 STAMP R 1 Btree 876,235 Barnes 86,413 Kmeans 148,084 Contention 562,844 Cholesky 296,708 Vacation 684,826 Deque 7,152 Radiosity 115, Prioque 72,095 Raytrace 1,257, R 1 O-que. GEMS R 1 SPLASH-2 R 1 STAMP R 1 Btree 21,137 Barnes 417 Kmeans 270 Contention 130 Cholesky 3,751 Vacation 7 Deque 3,210 Radiosity 2, Prioque 3,022 Raytrace 38, R 1 R-res. GEMS R 1 SPLASH-2 R 1 STAMP R 1 Btree 22,113 Barnes 448 Kmeans 324 Contention 152 Cholesky 5,888 Vacation 10 Deque 3,303 Radiosity 4, Prioque 3,232 Raytrace 39, cycle O-que bit 1 2 cycle R-res. 1 RaR-addr. 1 cycle Raytrace 0.2% 6. Read Write Read-after-Read HTM Futile Stall GEMS microbench SPLASH-2 STAMP HTM 66.9% 1) Herlihy, M. et al.: Transactional Memory: Architectural Support for Lock-Free Data Structures, Proc. 20th Int l Symp. on Computer Architecture (ISCA 93), pp (1993). 2) J.Moravan, M. et al.: Supporting Nested Transactional Memory in LogTM, Proc. 12th Int l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp.1 12 (2006). 3) M, L., G, M. and A, G.: A Dynamically Adaptable Hardware Transactional Memory, Microarchitecture(MICRO), rd Annual IEEE/ACM, pp (2010). 4) Yoo, R.M. and Lee, H.-H.S.: Adaptive Transaction Scheduling for Transactional Memory Systems, Proc. 20th Annual Symp. on Parallelism in Algorithms and Architectures (SPAA 08), pp (2008). 5) Akpinar, E. et al.: A Comprehensive Study of Conflict Resolution Policies in Hardware Transactional Memory, Proc. 6th ACM SIG- PLAN Workshop on Transactional Computing (TRANSACT 11) (2011). 6) Gaona, E. et al.: Dynamic Serialization Improving Energy Consumption in Eager- Eager Hardware Transactional Memory Systems, Proc. Parallel, Distributed and Network- Based Processing th Euromicro International Conference (PDP 12), pp (2012). 7) Moore, K.E. et al.: LogTM: Log-based Transactional Memory, Proc. 12th Int l Symp. on High-Performance Computer Architecture, pp (2006). 8) Magnusson, P.S. et al.: Simics: A Full System Simulation Platform, Computer, Vol.35, No.2, pp (2002). 9) Martin, M. M. K. et al.: Multifacet s General Execution-driven Multiprocessor Simulator (GEMS) Toolset, ACM SIGARCH Computer Architecture News, Vol.33, No.4, pp (2005). 10) Gramoli, V. and Guerraoui, R.: Transactions - stamp, transactions/wiki/doku.php?id=stamp (2011). 11) Alameldeen, A. R. and Wood, D. A.: Variability in Architectural Simulations of Multi- Threaded Workloads, Proc. 9th Int l Symp. on High-Performance Computer Architecture (HPCA 03), pp.7 18 (2003). c 2013 Information Processing Society of Japan 169
先進的計算基盤システムシンポジウム 2 : : TM TM 2.2 LogTM HTM LogTM TM LogTM LogTM LogTM read write read write LogTM Illinois 3 Read after Write (RaW): writ
先進的計算基盤システムシンポジウム LogTM 1 1 1, 1 1 1 LogTM LogTM possible cycle starving writer starving writer LogTM 18.7% 6.6% A Speed-Up Technique for LogTM by Preventing Recurrence of Conflicts Masamichi Eto, 1 Shoichiro
IPSJ SIG Technical Report Vol.2016-ARC-221 No /8/9 GC 1 1 GC GC GC GC DalvikVM GC 12.4% 5.7% 1. Garbage Collection: GC GC Java GC GC GC GC Dalv
GC 1 1 GC GC GC GC DalvikVM GC 12.4% 5.7% 1. Garbage Collection: GC GC Java GC GC GC GC DalvikVM[1] GC 1 Nagoya Institute of Technology GC GC 2. GC GC 2.1 GC 1 c 2016 Information Processing Society of
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
FabHetero FabHetero FabHetero FabCache FabCache SPEC2000INT IPC FabCache 0.076%
2013 (409812) FabHetero FabHetero FabHetero FabCache FabCache SPEC2000INT 6 1000 IPC FabCache 0.076% Abstract Single-ISA heterogeneous multi-core processors are increasing importance in the processor architecture.
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int
SOA 1 1 1 1 (HNS) HNS SOA SOA 3 3 A Service-Oriented Platform for Feature Interaction Detection and Resolution in Home Network System Yuhei Yoshimura, 1 Takuya Inada Hiroshi Igaki 1, 1 and Masahide Nakamura
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System
1. (1) ( MMI ) 2. 3. MMI Personal Computer(PC) MMI PC 1 1 2 (%) (%) 100.0 95.2 100.0 80.1 2 % 31.3% 2 PC (3 ) (2) MMI 2 ( ),,,, 49,,p531-532,2005 ( ),,,,,2005,p66-p67,2005 17 Proposal of an Algorithm of
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came
3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is
2017 (413812)
2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
58 10
57 Multi-channel MAC Protocol with Multi-busytone in Ad-hoc Networks Masatoshi Fukushima*, Ushio Yamamoto* and Yoshikuni Onozato* Abstract Multi-channel MAC protocols for wireless ad hoc networks have
3_23.dvi
Vol. 52 No. 3 1234 1244 (Mar. 2011) 1 1 mixi 1 Casual Scheduling Management and Shared System Using Avatar Takashi Yoshino 1 and Takayuki Yamano 1 Conventional scheduling management and shared systems
2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )
1,a) 2 4 WC C WC C Grading Student programs for visualizing progress in classroom Naito Hiroshi 1,a) Saito Takashi 2 Abstract: To grade student programs in Computer-Aided Assessment system, we propose
1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf
1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
A Study on Traffic Characteristics in Multi-hop Wireless Networks 2010 3 Yoichi Yamasaki ( ) 21 Local Area Network (LAN) LAN LAN LAN (AP, Access Point) LAN AP LAN AP AP AP (MWN, Multi-hop Wireless Network)
EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju
EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website
The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website by the author(s) under the agreement with the IPSJ.
Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information
Vol.54 No.7 1937 1950 (July 2013) 1,a) 2012 11 1, 2013 4 5 1 Similar Sounds Sentences Generator Based on Morphological Analysis Manner and Low Class Words Masaaki Kanakubo 1,a) Received: November 1, 2012,
[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing
1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November
2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou
情 報 処 理 学 会 インタラクション 2013 IPSJ Interaction 2013 2013-Interaction (3EXB-06) 2013/3/2 ourcam: 1 2 ourcam ourcam: On-Site Programming Environment for Digital Photography RYO OSHIMA 1 YASUAKI KAKEHI 2 In these
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf
Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE
DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)
1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst
情報処理学会インタラクション 2015 IPSJ Interaction 2015 15INT014 2015/3/7 1,a) 1,b) 1,c) Design and Implementation of a Piano Learning Support System Considering Motivation Fukuya Yuto 1,a) Takegawa Yoshinari 1,b) Yanagi
Express5800/320Fa-L/320Fa-LR
7 7 Phoenix BIOS 4.0 Release 6.0.XXXX : CPU=Pentium III Processor XXX MHz 0640K System RAM Passed 0127M Extended RAM Passed WARNING 0212: Keybord Controller Failed. : Press to resume, to setup
Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig
Mover Design and Performance Analysis of Linear Synchronous Reluctance Motor with Multi-flux Barrier Masayuki Sanada, Member, Mitsutoshi Asano, Student Member, Shigeo Morimoto, Member, Yoji Takeda, Member
Express5800/R110a-1Hユーザーズガイド
4 Phoenix BIOS 4.0 Release 6.0.XXXX : CPU=Xeon Processor XXX MHz 0640K System RAM Passed 0127M Extended RAM Passed WARNING 0B60: DIMM group #1 has been disabled. : Press to resume, to
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment 1170288 2017 2 28 Docker,.,,.,,.,,.,. Docker.,..,., Web, Web.,.,.,, CPU,,. i ., OS..,, OS, VirtualBox,.,
<95DB8C9288E397C389C88A E696E6462>
2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,
6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat
AUTOSAR 1 1, 2 2 2 AUTOSAR AUTOSAR 3 2 2 41% 29% An Extension of AUTOSAR Communication Layers for Multicore Systems Toshiyuki Ichiba, 1 Hiroaki Takada, 1, 2 Shinya Honda 2 and Ryo Kurachi 2 AUTOSAR, a
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
2 ( ) i
25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori
Proposal and Characteristics Evaluation of a Power Generation System Utilizing Waste Heat from Factories for Load Leveling Pyong Sik Pak, Member, Takashi Arima, Non-member (Osaka University) In this paper,
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
mobicom.dvi
13Dynamic Voltage Scaling on a Low-Power Microprocessor Johan Pouwelse 5 Koen Langendoen Henk Sips Faculty of Information Technology and Systems Delft University of Technology, The Netherlands 1 78724
[email protected] No1 No2 OS Wintel Intel x86 CPU No3 No4 8bit=2 8 =256(Byte) 16bit=2 16 =65,536(Byte)=64KB= 6 5 32bit=2 32 =4,294,967,296(Byte)=4GB= 43 64bit=2 64 =18,446,744,073,709,551,615(Byte)=16EB
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
