Microsoft Word - Power_Analysis_Jp_ docx

Size: px
Start display at page:

Download "Microsoft Word - Power_Analysis_Jp_ docx"

Transcription

1 Power Analysis using G*Power Version 年 3 月 03 日 評価学博士 佐々木亮

2 サンプルサイズの検討方法 1. 最低のサンプルサイズサンプルサイズに関する考え方 統計分析を用いた調査報告書では サンプルサイズとして 30 あるいは 5 を用いている場合が頻繁に見られる 事前 事後比較のための 1 群の t 検定では まさに 30 あるいは 5 が必要ということになり 群の t 検定の場合には 30x=60 あるいは 5x=50 が必要ということになる それくらいのサンプルサイズがあれば母集団の特徴を代表させるのに十分に大きいと言えるという経験則に基づいている i あとは 予算と時間の制約が許す範囲で最大限のサンプルサイズを選択するようにする. Power Analysis の利用 1990 年以降 Power Analysis を用いて事前にサンプルサイズを検討したり 事後に Power( 検出力 ) を計算して報告書に記載すべきだという主張が見られるようになった ただし統計分析の実務家の間でも未だに Power Analysis は一般的ではなく また哲学的な根本的な問題を抱えているという指摘もある ( 大垣 005) しかしその計算方法を知り 実際に計算してサンプルサイズの決定の参考とすることは重要である 最初に 専用の計算ソフトである G*Power の操作方法を説明し 次に手計算の方法を説明する -1. G*Power の操作方法 (1) 次のサイトから G*Power をダウンロードしてインストール () ソフトを立ち上げると次のようなする 画面が現れる ower3/download-and-register 1

3 ケース 1: 群の t 検定の場合 (Independent two-sample t-testt 入力が出来たら Calculate を押す すると次の結果を得る 1 Statistical test ( 統計検定の種類 ) Means: Difference between two independent means (two groups) を選択する Type of power analysis( パワーアナリシスの種類 ) A priori: Compute required sample size - given, power, and effect size を選ぶ 3 Tails Two を選ぶ ( One の選択もあり得るが 相当の確信がない限り Two を選ぶのが無難 ) 4 Effect size d ( 効果サイズ d) 次のいずれかから選ぶ Large( 大 ) Medium( 中 ) Small( 小 ) ここでは練習のために 0.8 を選ぶ 5 error probability ( 有意水準 ) 通常の t 検定で用いる有意水準を用いる 0.05 が一般的 ( ただしサンプルサイズが大きくなりすぎた場合には 0.1 に緩めたりもする ) 6 Power (1- error probability)( パワー ( 検出力 ) 合意はないが 0.8 を用いることが提案されている (Cohen, 1988) ( ただしサンプルサイズが大きくなりすぎた場合には 0.8 以下に緩めたりもする ) 必要なサンプルサイズは 1 グループあたり 6 と計算された ( グループで 5 ) 1

4 ケース : 事前 事後比較の 1 群の t 検定の場合 (Paired one-sample t-testt 入力が出来たら Calculate を押す すると次の結果を得る Statistical test ( 統計検定の種類 ) Means: Difference between two dependent means (matched pairs) を選択する Type of power analysis( パワーアナリシスの種類 ) A priori: Compute required sample size - given, power, and effect size を選ぶ 3 Tails Two を選ぶ ( One の選択もあり得るが 相当の確信がない限り Two を選ぶのが無難 ) 4 Effect size d ( 効果サイズ d) 次のいずれかから選ぶ Large( 大 ) Medium( 中 ) Small( 小 ) ここでは練習のために 0.8 を選ぶ 5 error probability ( 有意水準 ) 通常の t 検定で用いる有意水準を用いる 0.05 が一般的 ( ただしサンプルサイズが大きくなりすぎた場合には 0.1 に緩めたりもする ) 6 Power (1- error probability)( パワー ( 検出力 )) 合意はないが 0.8 を用いることが提案されている (Cohen, 1988) ( ただしサンプルサイズが大きくなりすぎた場合には 0.8 以下に緩めたりもする ) 必要なサンプルサイズは 15 と計算された

5 -.. 手計算 G*Power の計算結果に近い値を手計算で得ることができる 計算に必要な情報は d( 効果サイズ ), ( 有 意水準 ) Power(1-)( 検出力 ) である まずそれぞれの意味を解説する 記号読み方 和訳 意味の説明 d ディー 効果サイズ グループの平均値の差が 標準偏差 ii の何割にあたるかの値 0.8= 大 0.5= 中 0.= 小と判断される (Cohen, 1986) アルファ有意水準 差がないのが母集団の本当の状態である という前提で 差がある と判断してしまう確率 (Type1 誤差とも言う ) この ( 有意水準 ) を 0.05(5%) としたとき 計算された t 値に対応する確率値 (p 値 ) がその水準より小さければ 差がある と判断してもいいことになる Power パワー 検出力 差があるのが母集団の本当の状態である という前提で そのとおり (1-) に 差がある と判断する確率 検出力が0.8 ということは 有意差があることを80% の確率で検出できることを示す (をType II 誤差の確率とも言う ) ケース 1: 群の t 検定の場合 (Independent two-sample t-testt (1) エクセルを開いて下のようなテーブルを作る d 1 / 1 / Z () データを手計算する d 1 / 1 / Z 0.8 と手入力する 0.05 と手入力する =1-(0.05/) =NORMINV(0.975,0,1) と手入力する ( 式中の 0 は平均値 1 は標準偏差を示している ) 0. と手入力する =NORMINV(0.,0,1) と手入力する 式中の 0 は平均値 1 は標準偏差を示している (3) 群の t 検定のためのサンプルサイズの計算公式にしたがって サンプルサイズを計算する n *( Z 1 / d Z ) = *(1.960 ( 0.84)) 0.8 = 4.5 (4) 手計算の結果と G*Power の結果を比べると次のとおり G*Power の結果と比べて手計算の結果がわずかに小さくなっている iii 手計算の結果 G*Powerの結果

6 ケース : 事前 事後比較の 1 群の t 検定の場合 (Paired one-sample t-testt (1) エクセルを開いて下のようなテーブルを作る ( ケース 1 と全く同じ ) d 1 / 1 / Z () データを手計算する ( ケース 1 と全く同じ ) d 1 / 1 / Z 0.8 と手入力する 0.05 と手入力する =1-(0.05/) =NORMINV(0.975,0,1) と手入力する ( 式中の 0 は平均値 1 は標準偏差を示している ) 0. と手入力する =NORMINV(0.,0,1) と手入力する 式中の 0 は平均値 1 は標準偏差を示している (3) 事前 事後比較の1 群のt 検定のためのサンプルサイズの計算公式にしたがって サンプルサイズを計算する ( Z n 1 / d Z ) (1.960 ( 0.84)) = 0.8 = 1.3 (4) 手計算の結果と G*Power の結果を比べると次のとおり G*Power の結果と比べて手計算の結果がわずかに小さくなっている iv 手計算の結果 G*Powerの結果

7 参考文献 Cohen, J. (1988). Statistical Power Analysis for the Behavioral Science ( nd ed.). Lawrence Erlbaum Associates, Publisheres. Dallal, G.E., (008). What Underlies Sample Size Calculations. Kuramoto,L. (Year unknown). Power and Sample Size. Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute. 大垣俊一 (005) Type II error とPower Analysis Argonauta 11:3-16(006) 涌井良幸 涌井貞美 (003) Excel で学ぶ統計解析 ナツメ社 ( 参考 ) 設定別のサンプルサイズの計算結果 d Independent t-test paird t-test 1 / Z1 Z / 手計算の結果 G*Powerの結果手計算の結果 G*Powerの結果 i アメリカの大学院で広く使われているテキストに次の記述がある.We assume that the sample is large (n>30). (p31). If σ is unknown and if the sample size is large (n>30), the sample standard deviation s can be substituted for the population standard deviationσ in the decision rules given above.(p31). Mansfield, E. (1986). BASIC STATISTICS with Applications, W.W.Norton & Company, Inc, 1986 なお サンプルサイズが極めて少ないからと言って そのサンプルからインパクトの有無を述べることができないわけではない 要は誤差のレベルの問題である という当然の意見もある (Marija J.SPSS6.1 Guide to Data Analysis, p.187) ii 群の標準偏差を合成した標準偏差を用いる なお Glass.V は 単純に比較グループの標準偏差を用いるべきと提案している iii 手計算と G*Power の計算結果のずれは 手計算が z 分布を使用しているのに対して G*Power が t 分布を使用していることに起因する 我々は理想的なサンプルサイズを計算しようとしているわけであるが その計算の一部として使用する t 値の算出式自体にサンプルサイズ n が入っており コンピューターによる無制限のトライ & エラーが可能である場合を除き t 分布を使った計算は手計算では膨大な時間を要することになりほぼ困難である そのため t 分布の式のかわりに z 分布の式で代用しているわけである (Dallal. (008)) iv iii と同じ 5

青焼 1章[15-52].indd

青焼 1章[15-52].indd 1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説 第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

Microsoft Word - Text_5_STATA_1_Jp_ doc

Microsoft Word - Text_5_STATA_1_Jp_ doc (Blank page) このページを捨てて 次のページから両面してください 社会調査者のための STATA による統計統計データデータ分析 1 < 基礎編 > Text 5 ヒストグラム 平均 分散 標準偏差 対応のある t 検定 ( 事前 - 事後の t 検定 ) 独立の t 検定 (2 群の t 検定 ) Version 2.3 (2013 年 03 月 03 日 ) 佐々木亮 Ph.D. 国際開発センター評価事業部主任研究員立教大学大学院

More information

こんにちは由美子です

こんにちは由美子です Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2016/ 10/ 28 統計学とは? What is Statistics? 古典統計学からベイズ統計学まで駆け足で From Classical statistics to Bayes statistics D3 Nakamura Yuta 統計学 Statistics 神の学問 Study of God Big data Population forecast SE? SD? 神のみぞ知る真理とは?

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P + Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」 URL: http://tsigeto.info/statg/ I () 3 2016 2 ( 7F) 1 : (1); (2) 1998 (70 20% 6 9 ) (30%) ( 2) ( 2) 2 1. (4/14) 2. SPSS (4/21) 3. (4/28) [] 4. (5/126/2) [1, 4] 5. (6/9) 6. (6/166/30) [2, 5] 7. (7/78/4)

More information

2 ( ) i

2 ( ) i 25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Python-statistics5   Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 ( http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています

More information

<4D F736F F F696E74202D204D C982E682E892B290AE82B582BD838A E8DB782CC904D978A8BE68AD482C98AD682B782E988EA8D6C8E402E >

<4D F736F F F696E74202D204D C982E682E892B290AE82B582BD838A E8DB782CC904D978A8BE68AD482C98AD682B782E988EA8D6C8E402E > SAS ユーザー総会 2017 Mantel-Haenszel 法により調整したリスク差の信頼区間に関する一考察 武田薬品工業株式会社日本開発センター生物統計室佐々木英麿 舟尾暢男 要旨 Mantel-Haenszel 法により調整したリスク差に関する以下の信頼区間の算出方法を紹介し 各信頼区間の被覆確率をシミュレーションにより確認することで性能評価を行う Greenland 信頼区間 Sato 信頼区間

More information

- 16 M7.3 14 M6.5 - - - - - A-4 A-5 A-3 F-3 F-1 C-3 G-1,E-6 C-2 D-1 F-2 E-7 J-1 J-3 B-3 K-1 B-3 I-4 I-3 I-2 I-6 C-1 I-5 B-5 B-2 J-2 A-1 A-2 E-1 B-4 I-1 E-2 E-5 B-1,E-4 E-3 A-1 A-2 A-2 A-3 A-4 A-5 A-2

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

Microsoft Word - BMDS_guidance pdf_final

Microsoft Word - BMDS_guidance pdf_final BMDS を用いたベンチマークドース法適用ガイダンス (BMDS は 米国 EPA のホームページ (http://www.epa.gov/ncea/bmds/) より無償でダウンロードで きる ) 最初に データ入力フォームにデータを入力する 病理所見の発現頻度等の非連続データの場合は モデルタイプとしてDichotomousを選択し 体重 血液 / 血液生化学検査値や器官重量等の連続データの場合は

More information

05_水本・竹内

05_水本・竹内 より良い外国語教育研究のための方法 (pp. 47 73) 外国語教育メディア学会 (LET) 関西支部メソドロジー研究部会 2010 年度報告論集 効果量と検定力分析入門 統計的検定を正しく使うために 水本篤 関西大学 竹内理 関西大学 キーワード : 統計的検定, 有意差, 効果量, 検定力, 検定力分析 1. 本稿の目的統計的検定は, 標本から得たデータ分析結果を母集団にまで一般化させる目的で行われる

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

State Committee of Russian Federation on Statistics 1 2 12 State Committee of Russian Federation on Statistics 53

State Committee of Russian Federation on Statistics 1 2 12 State Committee of Russian Federation on Statistics 53 I State Committee of Russian Federation on Statistics 52 State Committee of Russian Federation on Statistics 1 2 12 State Committee of Russian Federation on Statistics 53 State Committee of Russian Federation

More information

Medical3

Medical3 1.4.1 クロス集計表の作成 -l m 分割表 - 3つ以上のカテゴリを含む変数を用いて l mのクロス集計表による分析を行います この例では race( 人種 ) によってlow( 低体重出生 ) に差が認められるかどうかを分析します 人種には3つのカテゴリ 低体重出生には2つのカテゴリが含まれています 2つの変数はともにカテゴリ変数であるため クロス集計表によって分析します 1. 分析メニュー

More information

解析センターを知っていただく キャンペーン

解析センターを知っていただく キャンペーン 005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図

More information

7... 1... 34... 55... 86... 108 15 2003 1 2 3 1 7 pdf 2 8 1996 2-1 9010 5 247 362 4 7 5 4 11 7 22 4 29 45 5 59 6 61 4 63 10 2 820 3 1646 19 1944 1 2 4 11 3 11 22 4 1 340 2 20 3 13 4 450 1 2 3 4 2-2 29

More information

PrimerArray® Analysis Tool Ver.2.2

PrimerArray® Analysis Tool Ver.2.2 研究用 PrimerArray Analysis Tool Ver.2.2 説明書 v201801 PrimerArray Analysis Tool Ver.2.2 は PrimerArray( 製品コード PH001 ~ PH007 PH009 ~ PH015 PN001 ~ PN015) で得られたデータを解析するためのツールで コントロールサンプルと 1 種類の未知サンプル間の比較が可能です

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

<4D F736F F D204B208C5182CC94E497A682CC8DB782CC8C9F92E BD8F6494E48A722E646F6378>

<4D F736F F D204B208C5182CC94E497A682CC8DB782CC8C9F92E BD8F6494E48A722E646F6378> 3 群以上の比率の差の多重検定法 013 年 1 月 15 日 017 年 3 月 14 日修正 3 群以上の比率の差の多重検定法 ( 対比較 ) 分割表で表記される計数データについて群間で比率の差の検定を行う場合 全体としての統計的有意性の有無は χ 検定により判断することができるが 個々の群間の差の有意性を判定するためには多重検定法が必要となる 3 群以上の比率の差を対比較で検定する方法としては

More information

ANOVA

ANOVA 3 つ z のグループの平均を比べる ( 分散分析 : ANOVA: analysis of variance) 分散分析は 全体として 3 つ以上のグループの平均に差があるか ということしかわからないために, どのグループの間に差があったかを確かめるには 多重比較 という方法を用います これは Excel だと自分で計算しなければならないので, 分散分析には統計ソフトを使った方がよいでしょう 1.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]] 30 4 2016 3 pp.195-209. 2014 N=23 (S)AdvOV (S)OAdvV 2 N=17 (S)OAdvV 2014 3, 2008 Koizumi 1993 3 MP IP VP 1 MP 2006 2002 195 Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

Chapter カスタムテーブルの概要 カスタムテーブル Custom Tables は 複数の変数に基づいた多重クロス集計テーブルや スケール変数を用いた集計テーブルなど より複雑な集計表を自由に設計することができるIBM SPSS Statisticsのオプション製品です テーブ

Chapter カスタムテーブルの概要 カスタムテーブル Custom Tables は 複数の変数に基づいた多重クロス集計テーブルや スケール変数を用いた集計テーブルなど より複雑な集計表を自由に設計することができるIBM SPSS Statisticsのオプション製品です テーブ カスタムテーブル入門 1 カスタムテーブル入門 カスタムテーブル Custom Tables は IBM SPSS Statisticsのオプション機能の1つです カスタムテーブルを追加することで 基本的な度数集計テーブルやクロス集計テーブルの作成はもちろん 複数の変数を積み重ねた多重クロス集計テーブルや スケール変数を用いた集計テーブルなど より複雑で柔軟な集計表を作成することができます この章では

More information

Microsoft Word - apstattext04.docx

Microsoft Word - apstattext04.docx 4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順

目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順 SPSS 講習会テキスト 明治大学教育の情報化推進本部 IZM20140527 目次 1 章 SPSS の基礎 基本... 3 1.1 はじめに... 3 1.2 基本操作方法... 3 2 章データの編集... 6 2.1 はじめに... 6 2.2 値ラベルの利用... 6 2.3 計算結果に基づく新変数の作成... 7 2.4 値のグループ化... 8 2.5 値の昇順 降順... 10 3

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション VBA (Visual BASIC for Applications) で Body Mass Index 判定プログラムを作る ユーザーフォームを用いたプログラムの作成 Graphic User Interface ( GUI ) の利用法 構造化プログラムの作成 複雑なプログラムを 関数に分割して作る方法 VBA(Visual BASIC for Applications) のテキストは たくさんあります

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Bunka Women's University, Shibuya-ku, Tokyo 151-8523

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

2 3

2 3 Sample 2 3 4 5 6 7 8 9 3 18 24 32 34 40 45 55 63 70 77 82 96 118 121 123 131 143 149 158 167 173 187 192 204 217 224 231 17 285 290 292 1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

More information

2 ( 8 ) 7 14 10 16 4 Tachibana Alumni Association of Library and Information Science 10 80 10 12 10 80 20 1 80 21 2

2 ( 8 ) 7 14 10 16 4 Tachibana Alumni Association of Library and Information Science 10 80 10 12 10 80 20 1 80 21 2 ( ) 80 150 230 80 50 100 1 2 ( 8 ) 7 14 10 16 4 Tachibana Alumni Association of Library and Information Science 10 80 10 12 10 80 20 1 80 21 2 3 Power Power 1985 12 2 4 12 PDF 40 59 59 60 63 1 IT One for

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

異文化言語教育評価論 ⅠA 第 4 章分散分析 (3 グループ以上の平均を比較する ) 平成 26 年 5 月 14 日 報告者 :D.M. K.S. 4-1 分散分析とは 検定の多重性 t 検定 2 群の平均値を比較する場合の手法分散分析 3 群以上の平均を比較する場合の手法 t 検定

異文化言語教育評価論 ⅠA 第 4 章分散分析 (3 グループ以上の平均を比較する ) 平成 26 年 5 月 14 日 報告者 :D.M. K.S. 4-1 分散分析とは 検定の多重性 t 検定 2 群の平均値を比較する場合の手法分散分析 3 群以上の平均を比較する場合の手法 t 検定 異文化言語教育評価論 ⅠA 第 4 章分散分析 (3 グループ以上の平均を比較する ) 平成 26 年 5 月 14 日 報告者 :D.M. K.S. 4-1 分散分析とは 4-1-1 検定の多重性 t 検定 2 群の平均値を比較する場合の手法分散分析 3 群以上の平均を比較する場合の手法 t 検定の反復 (e.g., A, B, C の 3 群の比較を A-B 間 B-C 間 A-C 間の t 検定で行う

More information