「霧」や「もや」などをクリアにする高速画像処理技術
|
|
|
- あきひさ ののした
- 7 years ago
- Views:
Transcription
1 Fas Single-Image Defogging 谭志明 白向晖 王炳融 東明浩 あらまし CPU GPU fps Absrac Bad weaher condiions such as fog, haze, and dus ofen reduce he performance of oudoor cameras. In order o improve he visibiliy of surveillance and on-vehicle cameras, we propose a fas image-defogging mehod based on a dark channel prior. I firs esimaes he amospheric ligh by searching he sky area in he foggy image. Then i esimaes he ransmission map by refining a coarse map from a fine map. Finally, i produces a clear image from he foggy image by using he amospheric ligh and he ransmission map. We achieved a run speed of , wih a sofware implemenaion on a cenral processing uni (CPU) wih a graphics processing uni (GPU). This fas image-defogging mehod can be used in surveillance and driving sysems in real ime. FUJITSU. 64, 5, p ,
2 まえがき 2.5 m PM 従来技術 画像霧除去モデル x I J x x 1 A x x I xj x x A J x x A 1 x 図 -1 x I x A x J x I x I xa J x x e d x d x 霧除去の方法 Tan 7 Faal FUJITSU. 64, 5 09, 2013
3 霧画像 I x 明画像 J x x A I xj xxa 1x x 画 I xax を J x を 画 に霧 を する -1 Kraz 9 He 10 Tarel 11 x I He 3.0 GHz Inel Penium 4 PC ダークチャネル処理 He I dark x min c {r,g,b} min y x I y c I c I x x He 開発アルゴリズム 概要 I dark x J dark x x A 1 c x I dark x J dark xa c 0 I dark x A 1 c x x 1 I dark x /A c x 0 A FUJITSU. 64, 5 09,
4 図 -2 I x AA I x x 環境光の推定 A I dark x 0.1 I x 図 -3 透過マップの推定 x 図 -4 x M coarse x min c {r,g,b} min y x I y c R G B x 図 R G B M fine x min c {r,g,b} I x c I x J x FUJITSU. 64, 5 09, 2013
5 霧画像 CPU リ GPU リ 明画像 を 画像 CPU GPU -6 a b c d -7 x x x M x min max y x M coarse ym fine x x x 1M x /A 画像の復元 x J I x A /max x 0 A 0 0 実装 x GPUCPU GPU GPU GPU CPU GPU 図 GHz Inel i5 CPU NVIDIA GeForce 310M GPUPC fps 図 -7bd むすび FUJITSU. 64, 5 09,
6 100 参考文献 1 Y. Y. Schechner e al. Insan Dehazing of Images Using Polarizaion Compuer Vision and Paern Recogniion, Proceeding of he 2001 IEEE Compuer Sociey Conference Vol.1 p S. Shwarz e al. Blind Haze Separaion Compuer Vision and Paern Recogniion, Proceeding of he 2006 IEEE Compuer Sociey Conference Vol.2 p J. Kopf e al. Deep Phoo Model-Based Phoograph Enhancemen and Viewing SIGGRAPH Asia S. G. Narasimhan e al. Ineracive De Weahering of an Image Using Physical Models Workshop on Color and Phoomeric Mehods in Compuer Vision S. G. Narasimhan e al. Chromaic Framework for Vision in Bad Weaher Compuer Vision and Paern Recogniion, Proceeding of he 2000 IEEE Conference Vol.1 p S. G. Narasimhan e al. Conras Resoraion of Weaher Degraded Images The IEEE Transacions on Paern Analysis and Machine Inelligence Vol.25 No.6 p R. Tan Visibiliy in Bad Weaher from a Single Image Compuer Vision and Paern Recogniion Proceeding of he 2008 IEEE Conference p R. Faal Single Image Dehazing. Proceeding of SIGGRAPH 2008 p L. Kraz e al. Facorizing Scene Albedo and Deph from a Single Foggy Image Compuer Vision, Proceeding of he 2009 IEEE 12h Inernaional Conference p K. He e al. Single Image Haze Removal Using Dark Channel Prior Compuer Vision and Paern Recogniion Proceeding of he 2009 IEEE Conference p J. P. Tarel e al. Fas Visibiliy Resoraion from a Single Color or Gray LevelIimage Compuer Vision, Proceedings of he 12h IEEE Inernaional Conference p X. Lv e al. Real-ime Dehazing for Image and Video 18h Pacific Conference on Compuer Graphics and Applicaions p K. He e al. Guided Image Filering Compuer Vision, Proceedings of he 11h European conference p 著者紹介 谭 志明 (Tan Zhiming) 王炳融 (Wang Bingrong) 白向晖 (Bai Xianghui) 東明浩 ( ひがしあきひろ ) 528 FUJITSU. 64, 5 09, 2013
KinecV2 2.2 Kinec Kinec [8] Kinec Kinec [9] KinecV1 3D [10] Kisikidis [11] Kinec Kinec Kinec 3 KinecV2 PC 1 KinecV2 Kinec PC Kinec KinecV2 PC KinecV2
Kinec Developmen of Moion Capure Sysem using Muliple Kinecs 1 1 1 Miyaake Jumpei 1 Ohubo Masakazu 1 Yoshida Kaori 1 1 1 Graduae School of Life Science and Sysems Enginnering, Kyushu Insiue of echnology
(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)
(MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, [email protected], [email protected],
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
デジタルカメラ用ISP:Milbeaut
ISP Milbeaut Image Signal Processor: Milbeaut あらまし MilbeautISP Image Signal Processor 20 Mpixel Milbeaut6 MB91696AM MB91696AM Abstract Milbeaut is an image signal processor (ISP) that realizes a digital
携帯電話向け画像処理LSI:Milbeaut Mobile
LSI Image Signal Processing LSI for Phones: あ ら ま し PC LSIISP Image Signal Processor LSI Abstract Camera functions of mobile phones represented by smartphones have been rapidly evolving in recent years
1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D
3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,
1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +
3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows
2017 (413812)
2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL
PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP
スマート都市監視を実現する富士通のDeep Learning技術
Deep Learning Fujitsu Deep Learning Technology that Enables Smart City Monitoring あらまし IP AI 2018 3 FUJITSU Technical Computing Solution GREENAGES Citywide Surveillance V2 Citywide Surveillance Deep Learning
す 局所領域 ωk において 線形変換に用いる係数 (ak 画素の係数 (ak bk ) を算出し 入力画像の信号成分を bk ) は次式のコスト関数 E を最小化するように最適化 有さない画素に対して 式 (2) より画素値を算出する される これにより 低解像度な画像から補間によるアップサ E(
IR E-mail: [email protected] Abstract IR RGB ( ) IR IR IR RGB RGB PSNR 1 Time-Of- Flight(TOF)[1] Kinect [2] TOF LED TOF [3] [6] [4][5] 2 [6] RGB ( ) Infrared(IR) IR 2 2.1 1 す 局所領域 ωk において 線形変換に用いる係数 (ak
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
2007/8 Vol. J90 D No. 8 AdaBoos Haar-like AdaBoos Viola Jones Haar-like [17] (1) Haar-like AdaBoos (2) Suppor Vecor Tracking SVT [1] SVT [6] Okuma [10
a) 3D People Tracking Using he Paricle Filer wih Cascaded Classifiers Yoshinori KOBAYASHI a),daisukesugimura,kousukehirasawa, Naohiko SUZUKI,HiroshiKAGE,YoichiSATO, and Akihiro SUGIMOTO Haar-like AdaBoos
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
,,.,.,,.,.,.,.,,.,..,,,, i
22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of
1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf
1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
ActionScript Flash Player 8 ActionScript3.0 ActionScript Flash Video ActionScript.swf swf FlashPlayer AVM(Actionscript Virtual Machine) Windows
ActionScript3.0 1 1 YouTube Flash ActionScript3.0 Face detection and hiding using ActionScript3.0 for streaming video on the Internet Ryouta Tanaka 1 and Masanao Koeda 1 Recently, video streaming and video
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis
1,a) 2 2 2 1 2 3 24 Motion Frame Omission for Cartoon-like Effects Abstract: Limited animation is a hand-drawn animation style that holds each drawing for two or three successive frames to make up 24 frames
特別寄稿.indd
特別寄稿 ソフトインフラとしてのデジタル地図を活用した自動運転システム Autonomous vehicle using digital map as a soft infrastructure 菅沼直樹 Naoki SUGANUMA 1. はじめに 1) 2008 2012 ITS 2) CO 2 3) 4) Door to door Door to door Door to door DARPA(
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
形状変形による古文書画像のシームレス合成
Use of Shape Deformation to Seamlessly Stitch Historical Document Images Wei Liu Wei Fan Li Chen Sun Jun あらまし 1 2 Abstract In China, efforts are being made to preserve historical documents in the form
屋内ロケーション管理技術
Technology to Manage Indoor Locations 奥山敏 森信一郎 小川晃弘 あらまし ICT GPS GPS Abstract Smart devices and wireless networks have become widespread and an environment is gradually being put in place in which information
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig
Mover Design and Performance Analysis of Linear Synchronous Reluctance Motor with Multi-flux Barrier Masayuki Sanada, Member, Mitsutoshi Asano, Student Member, Shigeo Morimoto, Member, Yoji Takeda, Member
17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System
1. (1) ( MMI ) 2. 3. MMI Personal Computer(PC) MMI PC 1 1 2 (%) (%) 100.0 95.2 100.0 80.1 2 % 31.3% 2 PC (3 ) (2) MMI 2 ( ),,,, 49,,p531-532,2005 ( ),,,,,2005,p66-p67,2005 17 Proposal of an Algorithm of
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came
3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is
189 2015 1 80
189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87
i
29 23 23115148 i 1 1 2 3 2.1..................................... 3 2.2.................................. 6 2.2.1............................... 6 2.2.2.................................. 8 3 10 3.1........................................
04_奥田順也.indd
82016 pp. 45~58 STUDIES IN ART 8 Bulletin of Tamagawa University, College of Arts 2016 This study aimed to identify the contemporary issues considered necessary in today s keyboard harmonica instruction,
2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S
2010 M0107189 2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1............................ 5 2.2.............................
システム開発プロセスへのデザイン技術適用の取組み~HCDからUXデザインへ~
HCDUX Approach of Applying Design Technology to System Development Process: From HCD to UX Design 善方日出夫 小川俊雄 あらまし HCDHuman Centered Design SE SDEMHCDUIUser Interface RIARich Internet ApplicationUXUser
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: [email protected], {ide,murase,hirayama}@is.nagoya-u.ac.jp,
サウジアラビアMEMSプロジェクト環境監視システム~海外ソリューションビジネスへの取組み~
MEMS MEMS Project in Saudi Arabia: Initiative of Global Solution Business 白石直樹 矢部典雄 あらまし MEMSMODON Environment Management System 1.5 MODONSaudi Industrial Property Authority 3 MEMS MEMS Abstract The MODON
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
proc.dvi
M. D. Wheler Cyra Technologies, Inc. 3 3 CAD albedo Mapping textures on 3D geometric model using reflectance image Ryo Kurazume M. D. Wheler Katsushi Ikeuchi The University oftokyo Cyra Technologies, Inc.
21 e-learning Development of Real-time Learner Detection System for e-learning
21 e-learning Development of Real-time Learner Detection System for e-learning 1100349 2010 3 1 e-learning WBT (Web Based training) e-learning LMS (Learning Management System) LMS WBT e-learning e-learning
DEIM Forum 2012 E Web Extracting Modification of Objec
DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: [email protected], {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke
21 Effects of background stimuli by changing speed color matching color stimulus
21 Effects of background stimuli by changing speed color matching color stimulus 1100274 2010 3 1 ,.,,.,.,.,,,,.,, ( FL10N-EDL). ( 10cm, 2cm),,, 3.,,,, 4., ( MSS206-402W2J), ( SDM496)., 1200r/min,1200r/min
モバイルネットワーク管理システム
Management System for Mobile Networks 河村一利 村田政雄 樋口晃治 黒河内文保 あらまし SON Abstract Fujitsu is working on the development of an integrated system to be used in the future for managing various communication networks.
The Indirect Support to Faculty Advisers of die Individual Learning Support System for Underachieving Student The Indirect Support to Faculty Advisers of the Individual Learning Support System for Underachieving
Web Web Web Web Web, i
22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity
ï\éÜA4*
Feature Article Imaging of minuscule amounts of chemicals, Scannimg Chemical Microscope --- Increasing analysis information through imaging --- Abstract We have developed a Scanning Chemical Microscope
(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc
1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe
58 10
57 Multi-channel MAC Protocol with Multi-busytone in Ad-hoc Networks Masatoshi Fukushima*, Ushio Yamamoto* and Yoshikuni Onozato* Abstract Multi-channel MAC protocols for wireless ad hoc networks have
EPSON EP-803A/EP-803AW ユーザーズガイド
NPD4293-00 ...6... 6...10 Mac OS X...11 Mac OS X v10.5.x v10.6.x...11 Mac OS X v10.4.x...15...18...19...19...22...23...24!ex...24 /...25 P.I.F. PRINT Image Framer...25...26...30...30...31...31...31...35
