( ( 3 ( ( 6 (
|
|
- えつま くぬぎ
- 3 years ago
- Views:
Transcription
1 ( ( ( (Nicolas Bourbaki (Éléments d'histoire des athématiques : 984 b b b n ( b n/b n b ( 0 ( p ( (Euclid (Eukleides : EÎkleÐdhc : 300 (StoiqeÐwsic 7 ( 3 p.49 ( 97
2 ( ( 3 ( ( 6 (
3 ( (Rosetta Stone (Napoléon Bonaparte : ( 4.4cm 7.3cm 7.9cm 760kg 3 ( 3 ( ( 5 (Ptolemaios : 8 (Jean-François Champollion : (Thomas Young : ( 3 ( 3 ( 3m ( ( ,000 0, C,000 0,000 ( 0 ( 3
4 00 ( HistTopics/Egyptian_numerals.html (Rhind athematical Papyrus (oscow athematical Papyrus (Alexander Henry Rhind : ( (August Eisenlohr : 8390 (Ahmes (Amenemhat : cm 5.5m (Vladimir Semnoviq Goleniwev (Vladimir Semyonovich Golenishchev : ( cm 4.6m 4
5 m n 3 n n 3 ( n n 3 3 ( 5 0 n n ( n 5 = = = = = ( 5
6 ( ( 0 = = = 4 n (n + ( n+ 0 (i (ii n ( 0 n ( 0 (iii (iv 4 80 ( (i (ii (iii (iv (v 4 80 = ( = = ( = =
7 3 n (i (ii n ( n ( (iii (iv 9 8 ( (i 8 (ii (iii 9 (iv (v 9 8 = (i 9 (ii (iii 696 (iv (v = = 4 n 5 5 = 5 = ( + + = + + = ( ( = = = 7 + = ( = =
8 ( ( x 3 + = 0 x 0 0 ( + ( = ( = ( + ( ( ( = 8 = = 8 = 4 = = ( + ( ( = ( + ( ( = ( ( = ( = = ( ( ( = = 3 ( = = 30 =
9 (3 ( ( ( : / ( : Y (0 : < !! Y =
10 ( = (i (ii ( (iii ( = n = = n = = = 4 00 = = = 4 0 = 3 60 =
11 YBC789 8cm ( YBC the Yale Babylonian Collection 30, 4, 5, 0 4, 5, a = 0 30 =, 4, 5, 0 b = 4, 5, 0 4, 5, 35 c = 0 4, 5, 35 b = = = c = = = a b = c b !! a b = c , 5, 35 ( = (>Hrwn (Heron of Alexandria : 60? x a min( x max( x b i = x a i a i+ = a i + b i (i = a a x b r = a r x = a r
12 ( ? , , 36, (6, , , , , , , 36 0 (, (3, , (8, , , (4, , (9, (30, , , 36 (60 3, 40, , 40, , = 4, 48 4, = 4, 0 7, = 7, 48 7, 7, 4, 48 7 =, 8,, 4, 48 3, 40, 8 36 = 8,, 4, 48 ( 3 53 = (30 + ( = = 5, 0 +, 30 +, = 7, 76 = 8, 6
13 a b = a b , 45 45, , 0 48, , 5 4, 30 54, 6, , 4 8 7, 30 7, 3, 0, 4 56, 5 9 6, 40 30, , 5, 30, , 40, , 30, 44, 6, = 6 = 6 0 ;, 3, 0 = 0 ;, 78, 0 = 0 ;, 80 7 = 0 ; 3, 0 7, 9, , 9, 4 = 7, 9, 4 = 7, 9 0 ; 0, 56, 5 = 6 ; 4, 4, 5 7, 9 0 ; 0, 56, 5 55, 35 95, , 759, 35 6 ; 4, 4, 5 5 8,
14 (5 ( ( α β γ δ ε ζ η θ ι κ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω (,α,β,γ,δ,ε,,ζ,η,θ a b g d e c z h j d,γ ζ ( ( 5 ε 73 ογ
15 ( I V X L C D i v x l c d m I II III IV V VI VII VIII IX X XI XII = 5 IV 40 = 50 0 XL 400 = CD 9 = 0 IX 90 = 00 0 XC 900 = C { XLVIII (7 3 (A±oka : 68? 3? 88 ( (7?
16 0 (Brahmagupta : ? 68 (Br ahmasphuṭasiddh anta ( ( 0 (Ab u `Abd All ah uḥammad b. usa al- Khw arizm : 850 (Algoritmi denumero Indorum (Fibonacci (Leonardo Pisano : 74?50? (Liber Abaci : 0 6 V. ( 005 ( 7 N. ( ( ( 006 ( 8 3 ( 97 ( ( 5 5 A. ( 97 ( ( 5 7 G. ( ( 996 ( 8 8 S. ( ( ( 993 ( ( 0 ( ( 5 Richard J. Gillings athematics in the Time of the Pharaohs Dover (
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
パソコン機能ガイド
PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1
パソコン機能ガイド
PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22
1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3
3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22
エクセルカバー入稿用.indd
i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
01_.g.r..
I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2
™…
i 1 1 1 2 3 5 5 6 7 9 10 11 13 13 14 15 15 16 17 18 20 20 20 21 22 ii CONTENTS 23 24 26 27 2 31 31 32 32 33 34 37 37 38 39 39 40 42 42 43 44 45 48 50 51 51 iii 54 57 58 60 60 62 64 64 67 69 70 iv 70 71
困ったときのQ&A
ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1
活用ガイド (ハードウェア編)
(Windows 98) 808-877675-122-A ii iii iv NEC Corporation 1999 v vi PART 1 vii viii PART 2 PART 3 ix x xi xii P A R T 1 2 1 3 4 1 5 6 1 7 8 1 9 10 11 1 12 1 1 2 3 13 1 2 3 14 4 5 1 15 1 1 16 1 17 18 1 19
基礎数学I
I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............
) Euclid Eukleides : EÎkleÐdhc) : 300 ) StoiqeÐwsic) p.4647) ΑΒΓ ΒΑΓ ΓΑ Β ΒΓ ΑΓ ΓΑ Α G G G G G G G G G G G G G G G G ΑΒΓ ΒΑΓ = θ ΒΓ = a ΑΓ = b = c Α =
0 sin cos tan 3 θ θ y P c a r sin θ = a c = y r θ b C O θ x cos θ = b c = x r tan θ = a b = y x ristarchus >rðstarqoc) : 30? 30?) PerÐ megejÿn kai aposthmĺtwn HlÐou kai Selănhc : On the Sizes and istances
III
III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2
iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1
これわかWord2010_第1部_100710.indd
i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv
パワポカバー入稿用.indd
i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84
これでわかるAccess2010
i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77
7 i 7 1 2 3 4 5 6 ii 7 8 9 10 11 1 12 13 14 iii.......................................... iv................................................ 21... 1 v 3 6 7 3 vi vii viii ix x xi xii xiii xiv xv 26 27
9 i 9 1 2 3 4 5 6 ii 7 8 9 10 11 12 .......................................... iii ... 1... 1........................................ 9 iv... v 3 8 9 3 vi vii viii ix x xi xii xiii xiv 34 35 22 1 2 1
i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi 2 3 4 5 6 7 $ 8 9 10 11 12 13 14 15 16 17 $ $ $ 18 19 $ 20 21 22 23 24 25 26 27 $$ 28 29 30 31 $ $ $ 32 33 34 $ 35 $ 36 $ 37 38 39 40 $ 41 42 43 44
i
i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
平成18年版 男女共同参画白書
i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45
困ったときのQ&A
ii iii iv NEC Corporation 1998 v C O N T E N T S PART 1 vi vii viii ix x xi xii PART 2 xiii PART 3 xiv P A R T 1 3 1 2 PART 3 4 2 1 1 2 4 3 PART 1 4 5 5 6 PART 1 7 8 PART 1 9 1 2 3 1 2 3 10 PART 1 1 2
I
I II III IV V VI VII VIII IX X XI XII XIII XIV 1. 2 3 4 5 2. 6 7 8 3. 1 2 3 9 4 5 10 6 11 4. 1 2 3 1 2 12 1 2 3 1 2 3 13 14 1 2 1 15 16 1. 20 1 21 1 22 23 1 2 3 4 24 1 2 ok 25 1 2 26 1 2 3 27 2. 28
14 : n (1) n a n a n (2) a n n (1) 1 (n 1) a n 1 2 (n 2) a n 2 2 n 3 a n = a n 1 + a n 2 a 1 = 1 a 2 = 2 (2) a n = a n 1 + a n 2 ( ) ( a n = 1 1
14 : n 1 1 (1) n a n a n () a n n (1) 1 (n 1) a n 1 (n ) a n n 3 a n = a n 1 + a n a 1 = 1 a = () a n = a n 1 + a n ( ) ( a n = 1 1 + ) n+1 ( 5 1 ) n+1 5 5 1 0 3 a n = a n 1 + a n ( a 1 = 1 a = ) 1 3 5
1... 1 1... 1 2... 1 3... 1 4... 4 5... 7 6... 7 7... 12 8... 12 9... 13 10... 13 11... 13 12... 14 2... 14 1... 14 2... 16 3... 18 4... 19 5... 19 6.
3 2620149 1 3 8 3 2 198809 1/1 198809 1 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 1... 1 2... 1 3... 1 4... 4 5... 7 6... 7 7... 12 8... 12
ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7
(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)
1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y
支持力計算法.PDF
. (a) P P P P P P () P P P P (0) P P Hotω H P P δ ω H δ P P (a) ( ) () H P P n0(k P 4.7) (a)0 0 H n(k P 4.76) P P n0(k P 5.08) n0(k P.4) () 0 0 (0 ) n(k P 7.56) H P P n0(k P.7) n(k P.7) H P P n(k P 5.4)
活用ガイド (ソフトウェア編)
(Windows 95 ) ii iii iv NEC Corporation 1999 v P A R T 1 vi P A R T 2 vii P A R T 3 P A R T 4 viii P A R T 5 ix x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 6 5 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 4
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13
: , 2.0, 3.0, 2.0, (%) ( 2.
2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................
( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
Step2 入門
ii iii iv v vi NEC Corporation 1999 vii C O N T E N T S PART 1 PART 2 PART 3 viii PART 4 ix C O N T E N T S PART 5 x PART 6 xi C O N T E N T S PART 7 xii PART 8 PART 9 xiii C O N T E N T S xiv xv PART
活用ガイド (ソフトウェア編)
(Windows 98 ) ii iii iv v NEC Corporation 1999 vi P A R T 1 P A R T 2 vii P A R T 3 viii P A R T 4 ix P A R T 5 x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 5 6 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 10
( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e
( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )
MultiPASS B-20 MultiPASS Suite 3.10使用説明書
TM MultiPASS Suite Ver.3.10 for Windows ii iii Copyright 1999 Canon Inc. ALL RIGHTS RESERVED iv v vi vii viii ix x 1 2 3 4 5 6 7 8 9 xi xii 1 1 1-1 1 2 3 1-2 4 5 1 1-3 6 1-4 1 7 8 1-5 9 10 11 1-6 1 1-7
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
untitled
1998 6 25 ( ) 1 10 1982 10 28 37/7 1990 12 14 45/94 (WHO) 1 1989 12 8 NGO (ECE) 3 1995 10 25 ECE 1991 2 25 1992 3 17 1998 6 4 1 2 1. 2. a b c (a) (b) d 17 3. a b (a) c (b) 4. 5. 3 1. 2. 3. 4. 5. 6. 7.
活用ガイド (ソフトウェア編)
ii iii iv NEC Corporation 1998 v vi PA RT 1 vii PA RT 2 viii PA RT 3 PA RT 4 ix P A R T 1 2 3 1 4 5 1 1 2 1 2 3 4 6 1 2 3 4 5 7 1 6 7 8 1 9 1 10 1 2 3 4 5 6 7 8 9 10 11 11 1 12 12 1 13 1 1 14 2 3 4 5 1
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )
II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11
01_SWGuide_V8.50.fm
ii iii iv v 2 vi vii viii ix x xi xii xiii xiv xv xvi xvii 1 CHAPTER 1-1 1-2 1-3 2 CHAPTER 2-1 2-2 2-3 2-4 1 2 2-5 3 4 2-6 5 6 2-7 7 8 2-8 9 2-9 10 11 2-10 12 13 2-11 14 15 2-12 16 17 18 2-13 1 2 2-14
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
nsg02-13/ky045059301600033210
φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W
I
I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
『戦時経済体制の構想と展開』
1 15 15 17 29 36 45 47 48 53 53 54 58 60 70 88 95 95 98 102 107 116 v 121 121 123 124 129 132 142 160 163 163 168 174 183 193 198 205 205 208 212 218 232 237 237 240 247 251 vi 256 268 273 289 293 311
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2
6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,
20 2008 ( bone collar Hematoxlyin-Eosin staining Alizarin Red S / Alcian Blue staining 1
(報告書まとめ 2004/03/ )
- i - ii iii iv v vi vii viii ix x xi 1 Shock G( Invention) (Property rule) (Liability rule) Impact flow 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 (
長崎県地域防災計画
i ii iii iv v vi vii viii ix - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - 玢 - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - -
Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e
7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a
1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ
Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U
newmain.dvi
数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published
ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx
i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
3 A 18 11 19 2 1 JIA 2 (JSCA) 3 4 5 6 7 8 9 10 11 12 13 14 B 4 I. (1) 18 3 29 30 33 12 18 3 542,264 22.5 62 46.3 242 149 29% 3 7 7 1 2 1 2 0.1.1 0.1.2 60 17 1 3 6 8 1 2 0.1.3 1 2 0.1.4 5 (2) (1) 0.2.2
( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =
1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =
vi アハ ート2 アハ ート3 アハ ート4 アハ ート5 アハ ート6 アハ ート7 アハ ート8 アハ ート9 アハ ート10 アハ ート11 アハ ート12 アハ ート13 アハ ート14 アハ ート15 アハ ート16 アハ ート17 アハ ート18 アハ ート19 アハ ート20 アハ
iii vi アハ ート2 アハ ート3 アハ ート4 アハ ート5 アハ ート6 アハ ート7 アハ ート8 アハ ート9 アハ ート10 アハ ート11 アハ ート12 アハ ート13 アハ ート14 アハ ート15 アハ ート16 アハ ート17 アハ ート18 アハ ート19 アハ ート20 アハ ート21 アハ ート22 アハ ート23 vii アハ ート 24 アハ ート 25 アハ ート26
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
VB-C50i/VB-C50iR 使用説明書
a ii iii iv a v vi vii viii d a a d ix a a d b a a a b x a a g a g a e a a xi a a a xii a a xiii xiv 1-2 1-3 d 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 2-2 2-3 a 2-4 a 2-5 a 2-6 2-7 2-8 2-9 2-10 2-11 2-12
基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7
all.dvi
72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G