Similar documents
卒業論文

Microsoft Word - ‚²‰ÆŸ_Ł¶−®’¬.doc


2章.doc

charpter0.PDF



Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

第5章 樹脂化ドラムメータの開発


0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

(1) (2) (3) (4) (5) 2.1 ( ) 2

J. Jpn. Inst. Light Met. 65(6): (2015)

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

07.報文_及川ら-二校目.indd

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

Taro13-芦北(改).jtd


Taro13-宇城(改).jtd

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

n1


119_mokuji.indd

untitled

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

旭硝子のリグラスカタログ

2日目 10月31日(金曜日)プログラム

本文/本文

ω ω

横組/中高 技術科問題           ●


表題.PDF


2

P indd

85

1


H1_H4_ ai


今日からはじめるプロアクティブ

1 2 STEP 1 STEP 2 STEP 3

1


untitled

制御盤BASIC Vol.3

altus_storage_guide

サイボウズ ガルーン 3 管理者マニュアル

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

) km 200 m ) ) ) ) ) ) ) kg kg ) 017 x y x 2 y 5x 5 y )

理解のための教材開発と授業 (宮内).PDF

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

NewBead_no17_4c_pdf.indd

橡matufw


財団法人母子健康協会第三十回シンポジウム

untitled

O

P,2 P,3~5 P,6~10 P11~14 P,15~18 P,19~22 P,23 1

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

豪雨・地震による土砂災害の危険度予測と 被害軽減技術の開発に向けて

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

修士論文

Triple 2:1 High-Speed Video Multiplexer (Rev. C

untitled

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

pc725v0nszxf_j

Donald Carl J. Choi, β ( )

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO

技術研究報告第26号

平成12年度


1 (1) (2) 2

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

high collar

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

OPA134/2134/4134('98.03)

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

untitled

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

DV-RA1000HD_Jpn(b)


スペースプラズマ研究会-赤星.ppt

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D


7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

140926_LPLKN_右.pdf

The essentials of imaging

Takeshi Kudo 1, Yukihiro Takahashi 1, Mitsuteru Sato 1, Taishi Yamada 1, Nui Kobayashi 1, Yusuke Sanmiya 1, Tomohiro Inoue 2, H C Stenbaek- Nielsen 3,


2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

卓球の試合への興味度に関する確率論的分析


Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

プラズマ核融合学会誌6月【91-6】/プロジェクトレビュー


伊藤ハム株式会社

Transcription:

155 13 2 15 B97176 1

1.1. 4 1.2. 5 1.2.1. 1.2.2. 1.3. 7 2. 2.1. 9 2.2. 1 2.3. 13 2.4. 16 3. 3.1. 3.1.1. 18 3.1.2. 26 3.1.3. 33 3.2. 3.2.1. 34 3.2.2. 5 4. 4.1. 52 4.2. 53 54 55 2

1 1.1 1.2 1.3 3

4

Fig. 1-1 5

Fig. 1-1 d=2. 2 6

7

2.1 2.2 2.3 2.4 8

9

Fig. 2-1 21 cm 2 cm 16 cm ( ) 23 OMEGA 55555 5cc/min 2 3 2 3 KANOMAX 21ser. Constant temperature Anemometer U 1.1 1.5 1

TSI MODEL 121-2W Validyne DP45 - CD15 55[Pa].15[cc].15[cc] TEAC DR-M3 1 khz (PHOTRON FASTCAM- Net Max) 1frames/sec 8 11

1: Compressor 1:Hot film probe 2: Needle valve 11: Position adjustor 3: Flow meter 12: Anemometer 4: Porous 13: Pressure transducer 5: Chamber 14: Carrier demodulator 6: Orifice 15: High speed video camera 7: Liquid buffer 16: Recorder 8: Surface w ave buffer 17: Light 9: Digital recorder Fig. 2-1 12

1 Fig. 2-2 Table. 2-1 5 Fig. 2-2 Table. 2-1 1 khz Fig. 2-3 Table. 2-2 13

(a) (c) (b) Fig.2-2 Table.2-1 Vc (cc) (a) 5 (b) (c) 6 (c) 1 (c) 2 (c) 48 14

Hot Film Probe Acrylic Orifice X Z L d Fig.2-3 Table.2-2 Orifice1 d(mm) 1. L(mm) 1 x(mm) 3. z(mm).5 15

16

3 3.1 1 3.2 2 17

3.1 5cc2 3 3.1.1 5cc Fig.3-1-1 Fig.3-1-5 8 2 4 5 1 15[cc/min] 1 mm 2 [cc/min] 18

Hot film Differential pressure [Pa] 6 5 4 3 15 1 5.1.2.6.4.2.6.4.2 Bubble volume [cc] 1 1 1 1 2 4.96 s Time step =.6 s (a) q=2 [cc/min] Hot film Differential pressure [Pa] 6 5 4 3 15 1 5.1.2.6.4.2.6.4.2 Bubble volume [cc] 1 1 1 1 2 4.2 s Time step =.6 s () q=4 [cc/min] Fig.3-1-1 ( 5 [cc]d=1. [mm] ) 19

Hot film Differential pressure [Pa] 6 5 4 3 15 1 5.1.2.6.4.2.6.4.2 Bubble volume [cc] 1 1 1 1 2 4.11 Time step =.6 s (c) q=5 [cc/min] Hot film Differential pressure [Pa] 7 6 5 4 15 1 5.1.2.6.4.2.6.4.2 Bubble volume [cc] 1 1 1 1 2 4.8 s Time step =.6 s (d) q=1 [cc/min] Fig.3-1-2 ( 5 [cc]d=1. [mm] ) 2

Hot film Differential pressure [Pa] 7 6 5 4 15 1 5.1.2.6.4.2.6.4.2 Bubble volume [cc] 1 1 1 1 2 4.26 s Time step =.6 s (e) q=15 [cc/min] Hot film Differential pressure [Pa] 7 6 5 4 15 1 5.1.2 1 1 1 1 2 4.24 s Time step =.9 s (f) q=2 [cc/min] Fig.3-1-3 ( 5 [cc]d=1. [mm] ) 21

Hot film Differential pressure [Pa] 7 6 5 4 15 1 5.1.2 1 1 1 1 2 4.5 s Time step =.12 s (g) q=25 [cc/min] Hot film Differential pressure [Pa] 7 6 5 4 15 1 5.1.2 1 1 1 1 2 4.13 s Time step =.12 s (h) q=3 [cc/min] Fig.3-1-4 ( 5 [cc] d=1. [mm] ) 22

Hot film Differential pressure [Pa] 7 6 5 4 15 1 5.1.2 1 1 1 1 2 4.29 s Time step =.24 s (i) q=35 [cc/min] Hot film Differential pressure [Pa] 7 6 5 4 15 1 5.1.2 1 1 1 1 2 4.23 s Time step =.24 s (j) q=4 [cc/min] Fig.3-1-5 ( 5 [cc] d=1. [mm] ) 23

215 cc/min 2 cc/min 15 cc/min 2 cc/min 1/2 1/2 24

Qo Qg Vc Vb Pc? dpc? Pc? Pc???? dt Vc Vc???? Qg Qo? Qg?? dvb dt 215 cc/min) 2 cc/min 1/2 3 cc/min 25

3.1.2 3.1.1 Fig.3-1-6 5 5 cc/min 4 cc/min 5 cc/min 25 8192 3 (db) Fig.3-1-7 3-1-8 26

Frequency[Hz] 5 45 4 35 3 25 2 15 f 6 4 2-2 1-4 5 5 1 15 2 25 3 35 4 Flow rate [cc/min] -6 5 45 4 35 f 4 2 Frequency[Hz] 3 25 2 15 1 5-2 -4-6 5 1 15 2 25 3 35 4 Flow rate [cc/min] Fig.3-1-6 () 5 [cc]d=1.[mm] 27

Hot film Differential pressure [Pa] 2 1 1 15 1 5.1.2 1 1 1 1 2 4 (a) q=15 [cc/min] Hot film Differential pressure [Pa] 2 1 1 15 1 5.1.2 1 1 1 1 2 4 () q=23 [cc/min] Fig.3-1-7 ( 5 [cc]d=1. [mm]) 28

Hot film Differential pressure [Pa] 2 1 1 15 1 5.1.2 1 1 1 1 2 4 () q=28 [cc/min] Hot film Differential pressure [Pa] 2 1 1 15 1 5 1 1 1 1 2 4 () q=35 [cc/min] Fig.3-1-8 ( 5 [cc]d=1. [mm]) 29

Fig.3-1-6 f 1/2 35 cc/min 3.1.1 Fig.3-1-73-1-8 1/2 Fig.3-1-9 3

Hot film 2 1 1 2 1 1 2 1 1 2 1 1 2 1 q=15 cc/min q=19 cc/min q=21 cc/min q=23 cc/min q=25 cc/min 1.1.2 Differential pressure [Pa] 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 q=15 cc/min q=19 cc/min q=21 cc/min q=23 cc/min q=25 cc/min.1.2 Fig.3-1-9 31

Fig.3-1-9 15 cc/min1/2 19 23 cc/min 1/2 25 cc/min 1921 cc/min 23 cc/min 3.1.1 3.1.1 32

3.1.3 1 1 33

3.2 1 3.2.1 Fig.3-2-1 Fig.3-2- 5 cc 55 [cc/min] 45 [cc/min] 51[c/min] 34

5 45 4 6 4 Frequency[Hz] 35 3 25 2 15 2-2 1 5 1 2 3 4 5 Flow rate [cc/min] -4-6 Fig.3-2-1 ccd=1. [mm] 35

Fig.3-2-2 () 6 [cc]d=1.[mm] 36

5 45 4 6 4 Frequency[Hz] 35 3 25 2 15 1 2-2 -4 5-6 5 1 15 2 25 3 35 4 Flow rate [cc/min] 5 45 4 6 4 Frequency[Hz] 35 3 25 2 15 1 2-2 -4 5 5 1 15 2 25 3 35 4 Flow rate [cc/min] -6 Fig.3-2-3 () 1 [cc] d=1.[mm] 37

5 45 4 6 4 Frequency[Hz] 35 3 25 2 15 2-2 1 5 5 1 15 2 25 3 35 4 Flow rate [cc/min] -4-6 5 45 4 6 4 Frequency[Hz] 35 3 25 2 15 1 2-2 -4 5 5 1 15 2 25 3 35 4 Flow rate [cc/min] -6 Fig.3-2-4 () 2 [cc] d=1.[mm] 38

5 45 4 35 4 2 Frequency[Hz] 3 25 2 15 1-2 -4 5 5 1 15 2 25 3 35 4 Flow rate [cc/min] -6 5 45 4 35 4 2 Frequency[Hz] 3 25 2 15-2 -4 1 5 5 1 15 2 25 3 35 4 Flow rate [cc/min] -6-8 Fig.3-2-5 () 48 [cc] d=1.[mm] 39

cc 6 cc cc 1 cc 6 cc 2 cc48 cc 4

cc, 25 4cc/min Fig.3-2-6 25 cc/min 1/2 4 cc/min 6 cc 13cc/min Fig.3-2-7 1 cc/min 1 1 cc 12 cc/min Fig.3-2-8 1 cc/min 6 cc 2 cc/min 41

2 cc Fig.3-2-93-2-1 1 cc 48 cc 2 cc Fig.3-2-11 3-2-12 1 cc 2 cc 42

Hot film 1.5.5.1.2 1 1 2 4.23 s Time step =.9 s (a) q=25 [cc/min] Hot film 2 1 1.1.2 1 1 2 4. s Time step =.22 s (b) q=4 [cc/min] Fig.3-2-6 ( [cc] d=1. [mm] ) 43

Hot film Differential pressure [Pa] 7 6 5 4 4 2.1.2 1 1 1 1 2 4.51 s Time step =.15 s (a) q=1 [cc/min] Hot film Differential pressure [Pa] 7 6 5 4 4 2.1.2 1 1 1 1 2 4.16 s Time step =.3 s (b) q=3 [cc/min] Fig.3-2-7 ( 6 [cc] d=1. [mm] ) 44

Hot film Differential pressure [Pa] 6 5 4 15 1 5.1.2 1 1 1 1 2 4.46 s Time step =.18 s (a) q=1 [cc/min] Hot film Differential pressure [Pa] 6 5 4 15 1 5.1.2 1 1 1 1 2 4.75 s Time step =.19 s (b) q=2 [cc/min] Fig.3-2-8 ( 1 [cc] d=1. [mm] ) 45

Hot film Differential pressure [Pa] 2 1 1 15 1 5.2.4 1 1 1 1 2 4 (a) q=1 [cc/min] Hot film Differential pressure [Pa] 2 1 1 15 1 5.2.4 1 1 1 1 2 4 (b) q=2 [cc/min] Fig.3-2-9 ( 2 [cc]d=1. [mm]) 46

Hot film Differential pressure [Pa] 2 1 1 15 1 5.2.4 () q=25 [cc/min] 1 1 1 1 2 4 Hot film Differential pressure [Pa] 2 1 1 15 1 5.2.4 1 1 1 1 2 4 () q=3 [cc/min] Fig.3-2-1 ( 2 [cc]d=1. [mm]) 47

Hot film Differential pressure [Pa] 2 1 1 3 2 1.5 1 1 1 1 1 2 4 (a) q=5 [cc/min] Hot film Differential pressure [Pa] 2 1 1 3 2 1.5 1 1 1 1 1 2 4 (b) q=1 [cc/min] Fig.3-2-11 ( 48 [cc]d=1. [mm]) 48

Hot film Differential pressure [Pa] 2 1 1 3 2 1.5 1 1 1 1 1 2 4 (c) q=2 [cc/min] Hot film Differential pressure [Pa] 2 1 1 3 2 1.5 1 1 1 1 1 2 4 (d) q=3 [cc/min] Fig.3-2-12 ( 48 [cc]d=1. [mm]) 49

3.2.2 1. 2. 6 cc 3. 148 cc 5

4 4.1 4.2 51

4. 4.1 1. 2. 3. 52

4.2 53

2 1 4 54

1) Abe, N.et al, Experimental research on nonlinear of bubble formation and interference, proc.32 nd Japan National Heat Transfer Symposium, pp435-436, 2. 2) Terasaka,K.,&Tuge,H, bubble Formation at single orifice in highly viscos licuid,.chemical Engineering of Japan, pp16-165, 199. 55