) [9] DNS DNS Westbrook and Dryer[10] ( ) [11] DNS Markstein Markstein Markstein Markstein Markstein [12,13] Markstein Markstein Marks

Similar documents
JFE.dvi

„´™Ÿ/’£flö

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

161 J 1 J 1997 FC 1998 J J J J J2 J1 J2 J1 J2 J1 J J1 J1 J J 2011 FIFA 2012 J 40 56

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

技術研究所 研究所報 No.80

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

( ) 2. ( ) 1. 1, kg CO2 1 2,000 kg 1 CO2 19 % 2,000 2, CO2 (NEDO) (COURSE50) 2008 COURSE50 CO2 CO2 10 % 20 %

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

28 Horizontal angle correction using straight line detection in an equirectangular image

0801297,繊維学会ファイバ11月号/報文-01-青山

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

16_.....E...._.I.v2006

X線分析の進歩36 別刷

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

電子部品はんだ接合部の熱疲労寿命解析

社会学部紀要 118号☆/6.藤原

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-

_念3)医療2009_夏.indd

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching


X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

kut-paper-template.dvi

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

,,,,., C Java,,.,,.,., ,,.,, i

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

202

プラズマ核融合学会誌11月【81‐11】/小特集5

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

untitled

研究紀要52号(よこ)人間科学☆/1.垂沢

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2


IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

J. Jpn. Inst. Light Met. 65(6): (2015)

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).


A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

空力騒音シミュレータの開発

先端社会研究 ★5★号/4.山崎

FA

The Japanese Journal of Health Psychology, 29(S): (2017)

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing


St. Andrew's University NII-Electronic Library Service




The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

Transcription:

56 177 2014 251-257 Journal of the Combustion Society of Japan Vol.56 No.177 (2014) 251-257 ORIGINAL PAPER 爆発シミュレーションに特化した水素 空気系の総括反応モデルに関する理論的検討 Theoretical Analysis of Global Reaction Model of H 2 /air System Specialized for Explosion Simulation * SATO, Minoru and KUWANA, Kazunori* 992-8510 4-3-16 Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan 2013 9 25 ; 2014 1 19 Received 25 September, 2013; Accepted 19 January, 2014 Abstract : Gas explosion is a high-speed flame propagation phenomenon. The apparent flame speed during an explosion accelerates because of flame instability. Since the damage caused by an accidental explosion is significantly influenced by the flame speed, one must accurately evaluate such flame acceleration when assessing the risk level of an explosion hazard. An important risk-assessment tool of an accidental explosion will be direct numerical simulation (DNS) using a global reaction model. Then, the global reaction model must correctly reproduce flame instability behaviors. This study focuses on the Markstein number of H 2/air mixture, an important parameter that describes the instability strength, and theoretically investigates if a one-step global reaction model can reproduce the correct Markstein number that was computed by a detailedchemistry simulation. It is first found that transport properties that depend on equivalence ratio must be considered when evaluating the Markstein number of a H 2/air mixture. It is also found that rate parameters (such as the global activation energy) that depend on equivalence ratio must be used to correctly reproduce the Markstein number using a global reaction model. It is recommended to determine the global activation energy by fitting the Markstein number of the global reaction model with that computed by a detailed-chemistry simulation. Key Words : Explosion, Risk assessment, Direct numerical simulation, Global reaction model, Markstein number, H2/air mixture, Global activation energy 1. 緒言 [1,2] ( [3,4] ) [1] * Corresponding author. E-mail: kuwana@yz.yamagata-u.ac.jp (computational fluid dynamics CFD) (direct numerical simulation DNS) [5-8] ( ) DNS ( (65)

252 56 177 2014 ) [9] DNS DNS Westbrook and Dryer[10] ( ) [11] DNS Markstein Markstein Markstein Markstein Markstein [12,13] Markstein Markstein Markstein ( ) ( ) Markstein 2. 理論モデルとその問題点 Markstein Markstein Clavin and Williams[14] Markstein ( [15,16] ) Clavin-Williams Clavin-Williams Clavin-Williams Bechtold and Matalon[17] Markstein Ma (1) β Leeff γ Zel dovich Lewis (2) (3) (4) E Tad Tu R σ (σ = ρu/ρb ρu ρb ) LeE Lewis LeD Lewis (4) Φ f f > 1 Φ = f Φ = f -1 ( Φ 1 ) 300 K (1) a1 a2 (5) (6) (66)

253 Table 1 Parameter values used in Fig.1. Fig.1 (1) (1) 3. 対向流予混合火炎シミュレーション λ(t/tu) T = Tu λ(t/tu) = (T/Tu) 1/2 λ(x) = x 1/2 Bechtold and Matalon [17] (1) Markstein [18-20] Fig.1 (1) Table 1 Bechtold and Matalon Table 1 D i α Lewis LeE LeD Markstein L (7) Su 0 [18-20] α Table 1 Fig.1 Markstein Markstein (1) (1) Fig.1 Markstein (1) CHEMKIN 1 atm, 300 K 2 cm San Diego Mechanism [21] Fig.2 f = 1.0 U0 = 10 m/s 0.006 m A A Markstein κ = du/dz max (1) (1) (1) Markstein ( Fig.1 Comparison between experimentally-measured and theoreticallypredicted Markstein numbers. For theoretical prediction, the parameters listed in Table 1 are used. Fig.2 Velocity profile of a premixed counterflow system. (67)

254 56 177 2014 Fig.4 Comparison between experimentally-measured and numericallycomputed Markstein lengths. 4. 結果および考察 Fig.3 Computed burning velocity as a function of flame stretch rate. Top: f = 0.3-1.5, bottom: f = 2.0-5.0. [17]) Fig.2 A Fig.3 10000 1/s Markstein 10000 1/s Markstein Fig.4 (1) Markstein 4.1. 物性値の当量比依存性 Fig.1 (1) [17] α D i f = 1 30 % f = 1.8 40 % Lennard-Jones [22] DF DO Fig.5 (1) Fig.5 (1) Table 1 20.0 kcal/mol Fig.1 Fig.5 Markstein (7) Markstein Bechtold-Matalon Markstein Bechtold- Matalon (68)

255 Fig.5 Markstein number predicted by Eq. (1) using thermal diffusivity and diffusion coefficient that depend on equivalence ratio. Fig.7 Response of mass burning rate to adiabatic flame temperature. 4.2. 総括一段反応の活性化エネルギー Fig.5 20 kcal/mol (1) f 1 f 3 (1) 1 f 3 (1) Markstein 20 kcal/mol Fig.6 Markstein Markstein Fig.6 Activation-energy dependence of Markstein number of one-step global chemistry. 4.3. 総括活性化エネルギーの当量比依存性 1 [11] (8) f 0 Su 0 ρu Tad San Diego Mechanism [21] Fig.7 f 0 (1) Markstein (1) Fig.8 (1) f = 1 (1) f = 1 (4) Lewis Leeff Zel dovich β ( ) Leeff 1 100 kcal/mol f = 1 (1) Fig.8 (69)

256 56 177 2014 Fig.8 Markstein numbers obtained by detailed-chemistry simulation (open circle), Eq. (1) using global activation energy computed by fitting Markstein number (solid line), and Eq. (1) using global activation energy computed from the temperature dependence of mass burning rate (dashed line). DNS Markstein DNS 5. 結言 Fig.9 Dependence of global activation energy on equivalence ratio. Activation energy is derived from the Bechtold-Matalon theory, (1), and from the response of mass burning rate to adiabatic flame temperature, (2). (1) Fig.8 Markstein Fig.9 f > 1 Markstein 2 f < 1 Markstein DNS Markstein Markstein Markstein Markstein Markstein Markstein (70)

257 10 % 10 % 謝辞 JSPS 23241051 References 1. Dobashi, R., Kawamura, S., Kuwana, K., and Nakayama, Y., Proc. Combust. Inst., 33: 2295-2301 (2011). 2. Mukaiyama, K., Shibayama, S., and Kuwana, K., Combust. Flame 160: 2471-2475 (2013). 3. Williams, F. A., Combustion Theory, Addition-Wesley, (1985). 4. Kadowaki, S., and Hasegawa, T., Prog. Energy Combust. Sci. 31: 193-241 (2005). 5. Molkov, V., Makarov, D., and Schneider, H., J. Phys. D 39: 4366-4376 (2006). 6. Makarov, D., Molkov, V., and Gostintsev, Yu., Combust. Sci. Technol. 179: 401-416 (2007). 7. Tomizuka, T., Kuwana, K., Shimizu, K., Mogi, T., Dobashi, R., and Koshi, M., J. Loss Prev. Process Ind. 26: 369-373 (2013). 8. Tomizuka, T., Kuwana, K., Mogi, T., Dobashi, R., and Koshi, M., Int. J. Hydrogen Energy 38: 5176-5180 (2013). 9. 55: 411-421 (2013). 10. Westbrook, C. K., and Dryer, F. L., Combust. Sci. Tech. 27: 31-43 (1981). 11. Sun, C. J., Sung, C. J., He, L., and Law, C. K., Combust. Flame 118: 108-128 (1999). 12. Gu, X. J., Haq, M. Z., Lawes, M., and Woolley, R., Combust. Flame 141: 41-58 (2000). 13. Bradley, D., Cresswell, T. M., and Puttock, J. S., Combust. Flame 124: 551-559 (2001). 14. Clavin, P., and Williams, F. A., J. Fluid Mech. 116: 251-282 (1982). 15. 48: 29-36 (2006). 16. 50: 1-6 (2008). 17. Bechtold, J. K., and Matalon, M., Combust. Flame 127: 1906-1913 (2001). 18. Aung, K. T., Hassan, M. I., and Faeth, G. M., Combust. Flame 109: 1-24 (1997). 19. Aung, K. T., Hassan, M. I., and Faeth, G. M., Combust. Flame 112: 1-15 (1998). 20. Kwon, O. C., and Faeth, G. M., Combust. Flame 124: 590-610 (2001). 21. The San Diego Mechanism, Version 20120907, http:// combustion.ucsd.edu 22. Poling, B. E., Prausnitz, J. M., and O Connell, J. P., The Properties of Gases and Liquids, 5th Ed., McGraw-Hill, 2000. (71)