L A TEX T.T TEX TEX 1 TEX TEX Donald E. Knuth tex 2 L A TEX TEX LATEX( DEC Leslie Lamport TEX TEX 3 L A TEX 3.1 L A TEX documentclass[]{} begin{document} end{document} LATEX
3.1.1 documentclass[a4paper,twocolumn,11pt]{jarticle} a4paper,twocolumn,11pt A4 (a4paper twocolumn 11 11ptB4 b4paperb5 b5paper landscape jarticle jreportjbook 3.1.2 pagestyle{plain} pagestyle{empty} topmargin -3cm textheight 33.5cm textwidth 45zw 1zw 3.2 L A TEX begin{}... end{}enviroment) begin{center}... end{center} center begin{} end{} flushright flushleft center enumerate 3.2.1 enumerate begin{enumerate} item item item end{enumerate} 1. 2. 3.
3.2.2 enumerate begin{enumerate} item begin{enumerate} item item item end{enumerate} item item 10end{enumerate} 1. (a) (b) (c) 2. 3. 3.3 L A TEX tabular begin{tabular}{} & & & & & & end{tabular} r c l 3.3.1 tabular begin{tabular}{lcr} & & & & end{tabular} hline
3.3.2 tabular begin{tabular}{ l c r } hline & & hline & & hline end{tabular} 3.3.3 tabular multicolumn begin{tabular}{ l c r } hline multicolumn{3}{ c }{} hline & & hline & & hline end{tabular} 3.3.4 tabtopsp newcommand{tabtopsp}[1]{vbox{vbox to#1{}vbox to1zw{}}} begin{tabular}{ l c r } hlinetabtopsp{3mm}%% & & [3mm] hlinetabtopsp{3mm}%% & & [1.5mm] hline end{tabular}
3.4 graphics graphicx graphicx graphics graphicx usepackage{garaphicx} 3.4.1 figure figure begin{figure}[htbp] (includegraphics[width=,height=]{}) caption{} end{figure} 3.4.2 minipage minipage begin{minipage}[]{ ()} end{minipage} Mathematica PostScript 1: y = x 2 2x 3 2: y = x 3 + 3x 2 9x 11 3: y = 3 x y = 3 x 4: z = sin xy 5: y = sin x, y = sin 2x 6:
3.5 "$" t: quad (, 1 6 ) 3.5.1 $frac{1}{x+1}$ 1 x+1 diplaystyle $diplaystyle frac{1}{x+1}$ 1 diplaystyle x + 1 diplaystyle everymath{displaystyle} 3.5.2 x 3 + x 2 z xy 2 y 2 z 2 3 2 :$x^3+x^2z-xy^2-y^2z$ :$sqrt{2}$ :$[3]sqrt{2}$ 2 2x 1 :$2^{2x-1}$ a 2 3 :$a^frac{2}{3}$ 1 (2x + 1) :$\_frac{1}{3}(2x+1)$ 3 a 1 + a 2 + a 3 + + a n :$a_1+a_2+a_3+cdots +a_n$ 1 :$frac{1}{1cdot 2}$ 1 2 µ 1 n :$left(frac{1}{2}right)^n$ 2 ~a :$vec{a}$ OA :$overrightarrow{oa}$ nx (2k + 1) :$sum_{k=1}^{n} (2k+1)$ k=1 lim h 0 Z b a h 2 + 2h h f(x) dx :$lim_{h \to 0}{frac{h^2+2h}{h}$ :$int_a^b f(x),dx$
3.5.3 mathstrut $overrightarrow{mathstrut a}$ $overrightarrow{mathstrut OA}$ $sqrt{mathstrut x}+sqrt{mathstrut y}$ a OA p x + p y 3 2 leftroot{-2}uproot{4} math unit $sqrt[leftroot{-2}uproot{4}3]{2}$ 3 2 3.5.4 fbox{ } 3.5.5 { } framebox{ }{ }{ } r c l framebox[5cm][c]{ } 3.5.6 {setlength{fboxsep}{0.3cm}fbox{}} {setlength{fboxsep}{0.3cm}framebox[5cm][c]{}}
3.6 L A TEX 3.6.1 L A TEX L A TEX (%) documentclass[a4paper,11pt]{jarticle} pagestyle{plain} topmargin -3cm textheight 33.5cm textwidth 45zw oddsidemargin -1cm LATEX usepackage{ascmac} usepackage{amssymb} usepackage{amsmath} usepackage{euler} fonteuex=euex10 defvint{mathop{vcenter{hbox{euexchar 132}}}nolimits} defvsmallint{mathop{vcenter{hbox{euexchar 122}}}nolimits} everymath{displaystyle} newcommand{ka}{{setlength{fboxsep} {0.09cm}framebox[0.45cm]{}}} newcommand{nkakko}{{raisebox{6pt}{setlength{fboxsep}%sekibun.03 {0.25cm}framebox[0.4cm]{}}}} newcommand{mkakko}{{ {raisebox{4pt}{setlength{fboxsep}%sekibun.03 {0.1cm}framebox[0.25cm]{}}}}} newcommand{kkakko}{{setlength{fboxsep} {0.18cm}framebox[0.65cm]{}}} deffbox#1{setlength{fboxsep}{0.12cm}fbox{#1}} defffbox#1{setlength{fboxsep}{0.3cm}fbox{#1}} deffparbox#1#2{fbox{parbox{#1}{#2}}}
defvec#1{overrightarrow{mathstrut #1}} defsqrt#1#2{sqrt[leftroot{-2}uproot{4}#1]{#2}} deflim#1#2#3{lim_{#1 to #2}#3} defint#1{int #1,dx} deftint#1#2#3{int _#1^#2 #3,dx} defseki#1#2#3{biggl[#1biggr]_#2^#3} defbseki#1#2#3{left[#1right]_#2^#3} newcommand{tabtopsp}[1]{vbox{vbox to#1{}vbox to1zw{}}} %% 1 defhyou#1#2{ begin{tabular}{c l c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]} %% 2 deflhyou#1#2{ begin{tabular}{c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]} %% 3 defhyou#1#2{ begin{tabular}{c l c l c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]}
defmidasi#1{ hspace{0.5cm}textbf{large #1} hspace{2cm}( ) $cdot $ ( ) ()NO} title{textbf{latex }} author{ T.T} date{} ken01.tex,ken02.tex input{ken01}.tex %%%%%% TEXT START %%%%%% begin{document} maketitle input{ken01} input{ken02} input{ken03} input{ken04} input{ken05} input{ken06} input{mokuji} end{document} 3.6.2 newcommand newcommand{ }{ } newcommand{ka}{{setlength{fboxsep}{0.09cm}framebox[0.45cm]{}}} ka 3.6.3 def def{ }{ } deftint#1#2#3{int _#1^#2 #3,dx} $Tint{a}{b}{f(x)}$ Z b a f(x) dx 3.6.4 tableofcontents L A TEX
3.6.5 ( ) ( ) ()NO f(x) x = a = 0 f 0 (a) =0 f(x) y = x 3 3x 2 + 3x + 1 y 0 = = 3 () y 0 = 0 x = x y 0 y y = x 3 + 6x 2 + 12x + 5 y 0 = = 3 () y 0 = 0 x = x y 0 y y = x 3 + 2 y 0 = y 0 = 0 x = x y 0 y L A TEX midasi{} begin{minipage}[t]{13cm] begin{shadebox} $f(x)$$x=a$ Fbox{},$=0$[1mm] $f (a)=0$, $f(x)$, Fbox{}Fbox{} end{shadebox} end{minipage}[2mm] fparbox{13cm}{ $y=x^3-3x^2+3x+1$[1mm] $y =$Fbox{}$ =,3,Fbox{()}^mkakko $[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y} }[5mm] $y=x^3+6x^2+12x+5$[1mm] $y =$Fbox{}$ =,3,Fbox{()}^mkakko $[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y} [1mm] $y=-x^3+2$[1mm] $y =$Fbox{}[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y}
3.6.6 ( ) ( ) ()NO a R = a, b, R a 6= 1, b 6= 1 a>0,a6= 1, R > 0, S > 0 p R a RS = a a R p = S = a a = a a r = a 1 = a 1 a = (3) 10 (1) 3 4 4 9 = 3 4 = = = (2) 8 16 = = = (2) 4 2 = = 1 = (1) 2 3 3 8 = 2 3 = = = (2) 3 1 9 = = = (3) 4 32 (4) 13 9 (5) 0.5 32 (6) 2 4 (7) 2 9 3 5 25 8 L A TEX midasi begin{minipage}[t]{15.5cm} begin{shadebox} $_a R=FFbox{}$$a,b,R $$aneq1,bneq1 $[3mm] $a>0,aneq1,r>0,s>0$p [1mm] $_ars=$fbox{} $_a{frac{r}{s}}=$fbox{}[1mm] $_ar^p=$fbox{}[1mm] $_a a=fbox{} $$_a a^r=fbox{} $$_a 1=Fbox{} $ $_a frac{1}{a}=fbox{} $ end{shadebox} end{minipage}[3mm] fparbox{15cm}{textbf{} textbf{(3) } $Rightarrow $ 10 }[2mm] [1mm] (1) $_3 4 cdot _4 9=_3 4times frac{_{ mkakko} ka}{_{ mkakko} ka}=_{ mkakko}ka=$ $_{ mkakko}ka^{,mkakko}=ka$[1mm] (2) $_8 16=frac{_{ mkakko} ka}{_{ mkakko} ka}=$ $frac{_{ mkakko}ka^{,mkakko}} {_{ mkakko}ka^{,mkakko}}=kkakko$[1mm] (2) $_4 2=frac{_{ mkakko} ka}{_{ mkakko} ka}=$ $frac{1}{_{ mkakko}ka^{,mkakko}}=kkakko$[1mm] [1mm] (1) $_2 3 cdot _3 8=_2 3times frac{_{ mkakko} ka}{_{ mkakko} ka}=_{ mkakko}ka=$ $_{ mkakko}ka^{,mkakko}=ka$[1mm] (2) $_{,sqrt{3}}frac{1}{9}=$ $frac{_{ mkakko}kkakko}{_{ mkakko}ka}= frac{_{ mkakko}ka^{ mkakko}}{ kkakko,_{ mkakko}ka}$ $=Fbox{} $[2mm] (3) $_4 32 $ (4) $_{ frac{1}{3}} 9$ (5) $_{0.5} {sqrt{32}} $ (6) $_{sqrt{2}} 4 $ (7)$\_2 9 cdot _3 5 cdot _{25} 8$
3.6.7 P AB ( ) ( ) ()NO ABCD CD 2:1 E BD 3:1 P P AE [] = AB = AD AC = CE : ED = : AE = = = BP : PD = : AP = = AP = AE P AE ABCD CD 3:1 E BD 4:1 P P AE ABCD AB 2:1 P BD 1:3 Q a = BA c = BC 1. BP, BQ a, c 2. PQ, PC a, c ( PQ = BQ BP PC = BC BP) 3. P, Q, C L A TEX midasi{} begin{minipage}[t]{12cm} begin{shadebox} $P $$AB $$iff $Fbox{} end{shadebox} end{minipage}[0.5cm] ABCD CD 2:1 E BD 3:1 P P AE [] [1mm] Fbox{}$ =Vec{AB} $Fbox{}$ =Vec{AD} $ $Vec{AC}= $Fbox{}[1mm] $CE:ED= $Fbox{:}[1mm] $Vec{AE}= $ FFbox{} $ = FFbox{} = FFbox{}$[1mm] $BP:PD= $Fbox{:}[1mm] $Vec{AP}= FFbox{} = FFbox{}$ $Vec{AP} = FFbox{} Vec{AE}$[1mm] P AE [2mm] ABCD CD 3:1 E BD 4:1 P P AE [4cm] ABCD AB 2:1 $P $ BD 1:3 Q $Vec{a}=Vec{BA}Vec{c}=Vec{BC} $ begin{enumerate} item $Vec{BP},Vec{BQ} $$Vec{a},Vec{c} $[1cm] item $Vec{PQ},Vec{PC} $$Vec{a},Vec{c} $[1mm] $(Vec{PQ}=Vec{BQ}-Vec{BP} $$Vec{PC}=Vec{BC}-Vec{BP}) $[1cm] item $P,Q,C $ end{enumerate}
3.6.8 f(x) F(x) Z b b f(x) dx = F(x) = a a ( ) ( ) ()NO Z 2 (x 2 2x + 3) dx 1 Z 2 (x 2 2x + 3) dx = 1 2 3 + 3 = 2 + 3 1 3 3 3 2 + 3 = 1. Z 2 Z 2 Z 1 (1) 3dx (2) (3x 2) dx (3) (3x 2 + 2x 1) dx 1 0 0 Z 1 Z 2 Z 3 (4) (x 2 x + 2) dx (5) (x 1)(x 2) dx (6) (t 2 3t + 5) dt 2 1 0 Z 3 x 1 dx 0 Z 3 Z Z x 1 dx = x 1 dx + 0 x 1 dx = Z (x 1) dx Z (x 1) dx = = 2. Z 3 Z 3 (1) x 2 dx (2) x 2 4x dx 0 1 Z b Z b f(x) 0 y = f(x) x x = a, x = b f(x) dx = ydx a a 3. x (1) y = x 2 + 3, x = 3, x = 1 (2) y = 2x 2 x + 3, x = 2, x = 5 LATEX midasi{} begin{minipage}[t]{6cm} begin{shadebox} $f(x)$$f(x)$ $Tint{a}{b}{f(x)}=seki{F(x)}{a}{b}=Fbox{}-Fbox{}$ end{shadebox} end{minipage}[2mm] fparbox{13.5cm}{, $Tint{{-1}}{2}{(x^2-2x+3)}$ $Tint{{-1}}{2}{(x^2-2x+3)}=$ [1mm] $seki{frac{quad,ka^mkakko}{ka}-ka^mkakko+3,ka }{{-1}}{2}$ $=left(frac{ka^3}{3}-ka^2+3cdot ka right)-$ $left(frac{ka^3}{3}-ka^2+3cdot ka right)=ka $} begin{enumerate} item begin{tabular}{lll} (1),$Tint{1}{2}{3}$hspace*{1.5cm} & (2),$Tint{0}{2}{(3x-2)}$hspace*{1cm} & (3),$Tint{0}{1}{(3x^2+2x-1)}$[1cm] (4),$Tint{{-2}}{1}{(x^2-x+2)}$ & (5),$Tint{1}{2}{(x-1)(x-2)}$ & (6),$int _0^3 (t^2-3t+5),dt$[1cm] end{tabular} fparbox{13.5cm}{, $Tint{0}{3}{ x-1 }$ $Tint{0}{3}{ x-1 }=Tint{mkakko}{mkakko}{ x-1 }+Tint{mkakko}{mkakko}{ x-1 }=$ $ka,tint{mkakko}{mkakko}{(x-1)} ka,tint{mkakko}{mkakko}{(x-1)}$[2mm] $=,ka,seki{}{mkakko}{mkakko}$ $ ka,seki{}{mkakko}{mkakko}=ka$} item (1),$Tint{0}{3}{ x-2 }$hspace*{4cm} (2),$Tint{{-1}}{3}{ x^2-4x }$[3cm] fparbox{13.5cm}{$f(x) eq 0$ $y=f(x)$$x$$x=a,x=b$ $Tint{a}{b}{f(x)}=Tint{a}{b}{y}$} item,$x$ (1),$y=x^2+3,x=-3,x=1$hspace*{2.5cm}(2),$y=2x^2-x+3,x=2,x=5$ end{enumerate}
1 TEX 1 2 L A TEX TEX 1 3 L A TEX 1 3.1 L A TEX... 1 3.1.1... 2 3.1.2... 2 3.2 L A TEX... 2 3.2.1 enumerate... 2 3.2.2 enumerate... 3 3.3 LATEX... 3 3.3.1 tabular... 3 3.3.2 tabular... 4 3.3.3 tabular... 4 3.3.4... 4 3.4... 5 3.4.1 figure... 5 3.4.2 minipage... 5 3.5... 6 3.5.1... 6 3.5.2... 6 3.5.3... 7 3.5.4... 7 3.5.5 { }..... 7 3.5.6... 7 3.6 LATEX... 8 3.6.1... 8 3.6.2 newcommand... 10 3.6.3 def... 10 3.6.4... 10 3.6.5... 11 3.6.6... 12 3.6.7... 13 3.6.8... 14