DVIOUT-マスタ-

Similar documents
semi4.dvi

tex03final1.dvi

sin log lim Deutsch Hello, TEX World! 1.1 T

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

tex02.dvi

電気通信大学 コンピュータリテラシー 文書整形 --- LaTeX ---

sarutex.dvi

コンピュータ基礎 5. マークアップによるレポート作成

Year 2010 Graduation Thesis A LATEX Template for Graduation Thesis Keio University Faculty of Environment and Information Studies Fusuke Hogeyama Advi

熊本県数学問題正解

L A L A TEX UTF-8 Makefile \begin{jabstract} \end{jabstract} \begin{eabstract} \end{eabstract} main.tex L A TEX i

高校生の就職への数学II

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


L A TEX Copyright c KAKEHI Katsuhiko All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{< >} \author{< >} \date{< >} < > \be

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

PowerPoint プレゼンテーション

(a) WYSIWYG (What you see is what you get.) (b) (c) Hyper Text Markup Language: SGML (Standard Generalized Markup Language) HTML (d) TEX

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

cpall.dvi

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Chapter 1 latex latex divout for windouws,texmaker,beamer latex 2012/2/2 2

1 L A TEX

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

数学論文の書き方 - 第1回:入門編

入試の軌跡

1.2 L A TEX 2ε Unicode L A TEX 2ε L A TEX 2ε Windows, Linux, Macintosh L A TEX 2ε 1.3 L A TEX 2ε L A TEX 2ε 1. L A TEX 2ε 2. L A TEX 2ε L A TEX 2ε WYS

JSIAM URL TEX Web jsjsiam.cls jsiammacrover

1.5,. ( A, 7, * ) Emacs,., <Return>., <Delete>. <Delete>, Delete. <Delete>,. 1.6,.,, Emacs.,. ( ), ( ),,. C-x,., Emacs.,. C-x C-f ( )... C-x C-s. Emac

( )

2 (2) WinShell 2 (3) WinShell L A TEX ( ) ( ) 2 1 L A TEX.tex L A TEX WinShell (4) WinShell 2 L A TEX L A TEX DVI DeVice Independent (5) WinShell 2 DV

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

visit.dvi

i I 1 1! xemacs platex DVI xdvi

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552


PDF PDF PDF

PowerPoint Presentation

Microsoft PowerPoint - 第13回 TeX 1日目.ppt [互換モード]


LaTeX実践講座 - これから TeXを使って文書を書きまくる人のために


4STEP 数学 B( 新課程 ) を解いてみた 平面上のベクトル 6 ベクトルと図形 59 A 2 B 2 = AB 2 - AA æ 1 2 ö = AB1 + AC1 - ç AA1 + AB1 3 3 è 3 3 ø 1

TeX紹介

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

TEX 6.2. EQUATIONS Y=[ Y=] equation y = ax + b y = ax + b (6.1) Y=[ Y=] Y=nonumber eqnarray 3 2 eqnarray equation Y=Y= eqnarray y = ax + b (6.2) y = x

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

untitled

:15: :..

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

04年度LS民法Ⅰ教材改訂版.PDF

readme.dvi

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

L A TEX (2)

i

TEX ( ) #2 Options Advanced Configure Ghostscript Options dwinkanji URL W32TeX Windows ptex W32TeX

学習の手順

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

<

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

アンリツ株式会社様

応力とひずみ.ppt

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Transcription:

L A TEX T.T TEX TEX 1 TEX TEX Donald E. Knuth tex 2 L A TEX TEX LATEX( DEC Leslie Lamport TEX TEX 3 L A TEX 3.1 L A TEX documentclass[]{} begin{document} end{document} LATEX

3.1.1 documentclass[a4paper,twocolumn,11pt]{jarticle} a4paper,twocolumn,11pt A4 (a4paper twocolumn 11 11ptB4 b4paperb5 b5paper landscape jarticle jreportjbook 3.1.2 pagestyle{plain} pagestyle{empty} topmargin -3cm textheight 33.5cm textwidth 45zw 1zw 3.2 L A TEX begin{}... end{}enviroment) begin{center}... end{center} center begin{} end{} flushright flushleft center enumerate 3.2.1 enumerate begin{enumerate} item item item end{enumerate} 1. 2. 3.

3.2.2 enumerate begin{enumerate} item begin{enumerate} item item item end{enumerate} item item 10end{enumerate} 1. (a) (b) (c) 2. 3. 3.3 L A TEX tabular begin{tabular}{} & & & & & & end{tabular} r c l 3.3.1 tabular begin{tabular}{lcr} & & & & end{tabular} hline

3.3.2 tabular begin{tabular}{ l c r } hline & & hline & & hline end{tabular} 3.3.3 tabular multicolumn begin{tabular}{ l c r } hline multicolumn{3}{ c }{} hline & & hline & & hline end{tabular} 3.3.4 tabtopsp newcommand{tabtopsp}[1]{vbox{vbox to#1{}vbox to1zw{}}} begin{tabular}{ l c r } hlinetabtopsp{3mm}%% & & [3mm] hlinetabtopsp{3mm}%% & & [1.5mm] hline end{tabular}

3.4 graphics graphicx graphicx graphics graphicx usepackage{garaphicx} 3.4.1 figure figure begin{figure}[htbp] (includegraphics[width=,height=]{}) caption{} end{figure} 3.4.2 minipage minipage begin{minipage}[]{ ()} end{minipage} Mathematica PostScript 1: y = x 2 2x 3 2: y = x 3 + 3x 2 9x 11 3: y = 3 x y = 3 x 4: z = sin xy 5: y = sin x, y = sin 2x 6:

3.5 "$" t: quad (, 1 6 ) 3.5.1 $frac{1}{x+1}$ 1 x+1 diplaystyle $diplaystyle frac{1}{x+1}$ 1 diplaystyle x + 1 diplaystyle everymath{displaystyle} 3.5.2 x 3 + x 2 z xy 2 y 2 z 2 3 2 :$x^3+x^2z-xy^2-y^2z$ :$sqrt{2}$ :$[3]sqrt{2}$ 2 2x 1 :$2^{2x-1}$ a 2 3 :$a^frac{2}{3}$ 1 (2x + 1) :$\_frac{1}{3}(2x+1)$ 3 a 1 + a 2 + a 3 + + a n :$a_1+a_2+a_3+cdots +a_n$ 1 :$frac{1}{1cdot 2}$ 1 2 µ 1 n :$left(frac{1}{2}right)^n$ 2 ~a :$vec{a}$ OA :$overrightarrow{oa}$ nx (2k + 1) :$sum_{k=1}^{n} (2k+1)$ k=1 lim h 0 Z b a h 2 + 2h h f(x) dx :$lim_{h \to 0}{frac{h^2+2h}{h}$ :$int_a^b f(x),dx$

3.5.3 mathstrut $overrightarrow{mathstrut a}$ $overrightarrow{mathstrut OA}$ $sqrt{mathstrut x}+sqrt{mathstrut y}$ a OA p x + p y 3 2 leftroot{-2}uproot{4} math unit $sqrt[leftroot{-2}uproot{4}3]{2}$ 3 2 3.5.4 fbox{ } 3.5.5 { } framebox{ }{ }{ } r c l framebox[5cm][c]{ } 3.5.6 {setlength{fboxsep}{0.3cm}fbox{}} {setlength{fboxsep}{0.3cm}framebox[5cm][c]{}}

3.6 L A TEX 3.6.1 L A TEX L A TEX (%) documentclass[a4paper,11pt]{jarticle} pagestyle{plain} topmargin -3cm textheight 33.5cm textwidth 45zw oddsidemargin -1cm LATEX usepackage{ascmac} usepackage{amssymb} usepackage{amsmath} usepackage{euler} fonteuex=euex10 defvint{mathop{vcenter{hbox{euexchar 132}}}nolimits} defvsmallint{mathop{vcenter{hbox{euexchar 122}}}nolimits} everymath{displaystyle} newcommand{ka}{{setlength{fboxsep} {0.09cm}framebox[0.45cm]{}}} newcommand{nkakko}{{raisebox{6pt}{setlength{fboxsep}%sekibun.03 {0.25cm}framebox[0.4cm]{}}}} newcommand{mkakko}{{ {raisebox{4pt}{setlength{fboxsep}%sekibun.03 {0.1cm}framebox[0.25cm]{}}}}} newcommand{kkakko}{{setlength{fboxsep} {0.18cm}framebox[0.65cm]{}}} deffbox#1{setlength{fboxsep}{0.12cm}fbox{#1}} defffbox#1{setlength{fboxsep}{0.3cm}fbox{#1}} deffparbox#1#2{fbox{parbox{#1}{#2}}}

defvec#1{overrightarrow{mathstrut #1}} defsqrt#1#2{sqrt[leftroot{-2}uproot{4}#1]{#2}} deflim#1#2#3{lim_{#1 to #2}#3} defint#1{int #1,dx} deftint#1#2#3{int _#1^#2 #3,dx} defseki#1#2#3{biggl[#1biggr]_#2^#3} defbseki#1#2#3{left[#1right]_#2^#3} newcommand{tabtopsp}[1]{vbox{vbox to#1{}vbox to1zw{}}} %% 1 defhyou#1#2{ begin{tabular}{c l c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]} %% 2 deflhyou#1#2{ begin{tabular}{c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]} %% 3 defhyou#1#2{ begin{tabular}{c l c l c l c l} hlinetabtopsp{1.5mm}%% $x$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{1.5mm}%% $#1$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[1.5mm] hlinetabtopsp{2.5mm}%% $#2$ &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm} &hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}&hspace*{0.7cm}[2.5mm] hline end{tabular}[3mm]}

defmidasi#1{ hspace{0.5cm}textbf{large #1} hspace{2cm}( ) $cdot $ ( ) ()NO} title{textbf{latex }} author{ T.T} date{} ken01.tex,ken02.tex input{ken01}.tex %%%%%% TEXT START %%%%%% begin{document} maketitle input{ken01} input{ken02} input{ken03} input{ken04} input{ken05} input{ken06} input{mokuji} end{document} 3.6.2 newcommand newcommand{ }{ } newcommand{ka}{{setlength{fboxsep}{0.09cm}framebox[0.45cm]{}}} ka 3.6.3 def def{ }{ } deftint#1#2#3{int _#1^#2 #3,dx} $Tint{a}{b}{f(x)}$ Z b a f(x) dx 3.6.4 tableofcontents L A TEX

3.6.5 ( ) ( ) ()NO f(x) x = a = 0 f 0 (a) =0 f(x) y = x 3 3x 2 + 3x + 1 y 0 = = 3 () y 0 = 0 x = x y 0 y y = x 3 + 6x 2 + 12x + 5 y 0 = = 3 () y 0 = 0 x = x y 0 y y = x 3 + 2 y 0 = y 0 = 0 x = x y 0 y L A TEX midasi{} begin{minipage}[t]{13cm] begin{shadebox} $f(x)$$x=a$ Fbox{},$=0$[1mm] $f (a)=0$, $f(x)$, Fbox{}Fbox{} end{shadebox} end{minipage}[2mm] fparbox{13cm}{ $y=x^3-3x^2+3x+1$[1mm] $y =$Fbox{}$ =,3,Fbox{()}^mkakko $[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y} }[5mm] $y=x^3+6x^2+12x+5$[1mm] $y =$Fbox{}$ =,3,Fbox{()}^mkakko $[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y} [1mm] $y=-x^3+2$[1mm] $y =$Fbox{}[1mm] $y =0$$x=ka $ [1mm] Lhyou{y }{y}

3.6.6 ( ) ( ) ()NO a R = a, b, R a 6= 1, b 6= 1 a>0,a6= 1, R > 0, S > 0 p R a RS = a a R p = S = a a = a a r = a 1 = a 1 a = (3) 10 (1) 3 4 4 9 = 3 4 = = = (2) 8 16 = = = (2) 4 2 = = 1 = (1) 2 3 3 8 = 2 3 = = = (2) 3 1 9 = = = (3) 4 32 (4) 13 9 (5) 0.5 32 (6) 2 4 (7) 2 9 3 5 25 8 L A TEX midasi begin{minipage}[t]{15.5cm} begin{shadebox} $_a R=FFbox{}$$a,b,R $$aneq1,bneq1 $[3mm] $a>0,aneq1,r>0,s>0$p [1mm] $_ars=$fbox{} $_a{frac{r}{s}}=$fbox{}[1mm] $_ar^p=$fbox{}[1mm] $_a a=fbox{} $$_a a^r=fbox{} $$_a 1=Fbox{} $ $_a frac{1}{a}=fbox{} $ end{shadebox} end{minipage}[3mm] fparbox{15cm}{textbf{} textbf{(3) } $Rightarrow $ 10 }[2mm] [1mm] (1) $_3 4 cdot _4 9=_3 4times frac{_{ mkakko} ka}{_{ mkakko} ka}=_{ mkakko}ka=$ $_{ mkakko}ka^{,mkakko}=ka$[1mm] (2) $_8 16=frac{_{ mkakko} ka}{_{ mkakko} ka}=$ $frac{_{ mkakko}ka^{,mkakko}} {_{ mkakko}ka^{,mkakko}}=kkakko$[1mm] (2) $_4 2=frac{_{ mkakko} ka}{_{ mkakko} ka}=$ $frac{1}{_{ mkakko}ka^{,mkakko}}=kkakko$[1mm] [1mm] (1) $_2 3 cdot _3 8=_2 3times frac{_{ mkakko} ka}{_{ mkakko} ka}=_{ mkakko}ka=$ $_{ mkakko}ka^{,mkakko}=ka$[1mm] (2) $_{,sqrt{3}}frac{1}{9}=$ $frac{_{ mkakko}kkakko}{_{ mkakko}ka}= frac{_{ mkakko}ka^{ mkakko}}{ kkakko,_{ mkakko}ka}$ $=Fbox{} $[2mm] (3) $_4 32 $ (4) $_{ frac{1}{3}} 9$ (5) $_{0.5} {sqrt{32}} $ (6) $_{sqrt{2}} 4 $ (7)$\_2 9 cdot _3 5 cdot _{25} 8$

3.6.7 P AB ( ) ( ) ()NO ABCD CD 2:1 E BD 3:1 P P AE [] = AB = AD AC = CE : ED = : AE = = = BP : PD = : AP = = AP = AE P AE ABCD CD 3:1 E BD 4:1 P P AE ABCD AB 2:1 P BD 1:3 Q a = BA c = BC 1. BP, BQ a, c 2. PQ, PC a, c ( PQ = BQ BP PC = BC BP) 3. P, Q, C L A TEX midasi{} begin{minipage}[t]{12cm} begin{shadebox} $P $$AB $$iff $Fbox{} end{shadebox} end{minipage}[0.5cm] ABCD CD 2:1 E BD 3:1 P P AE [] [1mm] Fbox{}$ =Vec{AB} $Fbox{}$ =Vec{AD} $ $Vec{AC}= $Fbox{}[1mm] $CE:ED= $Fbox{:}[1mm] $Vec{AE}= $ FFbox{} $ = FFbox{} = FFbox{}$[1mm] $BP:PD= $Fbox{:}[1mm] $Vec{AP}= FFbox{} = FFbox{}$ $Vec{AP} = FFbox{} Vec{AE}$[1mm] P AE [2mm] ABCD CD 3:1 E BD 4:1 P P AE [4cm] ABCD AB 2:1 $P $ BD 1:3 Q $Vec{a}=Vec{BA}Vec{c}=Vec{BC} $ begin{enumerate} item $Vec{BP},Vec{BQ} $$Vec{a},Vec{c} $[1cm] item $Vec{PQ},Vec{PC} $$Vec{a},Vec{c} $[1mm] $(Vec{PQ}=Vec{BQ}-Vec{BP} $$Vec{PC}=Vec{BC}-Vec{BP}) $[1cm] item $P,Q,C $ end{enumerate}

3.6.8 f(x) F(x) Z b b f(x) dx = F(x) = a a ( ) ( ) ()NO Z 2 (x 2 2x + 3) dx 1 Z 2 (x 2 2x + 3) dx = 1 2 3 + 3 = 2 + 3 1 3 3 3 2 + 3 = 1. Z 2 Z 2 Z 1 (1) 3dx (2) (3x 2) dx (3) (3x 2 + 2x 1) dx 1 0 0 Z 1 Z 2 Z 3 (4) (x 2 x + 2) dx (5) (x 1)(x 2) dx (6) (t 2 3t + 5) dt 2 1 0 Z 3 x 1 dx 0 Z 3 Z Z x 1 dx = x 1 dx + 0 x 1 dx = Z (x 1) dx Z (x 1) dx = = 2. Z 3 Z 3 (1) x 2 dx (2) x 2 4x dx 0 1 Z b Z b f(x) 0 y = f(x) x x = a, x = b f(x) dx = ydx a a 3. x (1) y = x 2 + 3, x = 3, x = 1 (2) y = 2x 2 x + 3, x = 2, x = 5 LATEX midasi{} begin{minipage}[t]{6cm} begin{shadebox} $f(x)$$f(x)$ $Tint{a}{b}{f(x)}=seki{F(x)}{a}{b}=Fbox{}-Fbox{}$ end{shadebox} end{minipage}[2mm] fparbox{13.5cm}{, $Tint{{-1}}{2}{(x^2-2x+3)}$ $Tint{{-1}}{2}{(x^2-2x+3)}=$ [1mm] $seki{frac{quad,ka^mkakko}{ka}-ka^mkakko+3,ka }{{-1}}{2}$ $=left(frac{ka^3}{3}-ka^2+3cdot ka right)-$ $left(frac{ka^3}{3}-ka^2+3cdot ka right)=ka $} begin{enumerate} item begin{tabular}{lll} (1),$Tint{1}{2}{3}$hspace*{1.5cm} & (2),$Tint{0}{2}{(3x-2)}$hspace*{1cm} & (3),$Tint{0}{1}{(3x^2+2x-1)}$[1cm] (4),$Tint{{-2}}{1}{(x^2-x+2)}$ & (5),$Tint{1}{2}{(x-1)(x-2)}$ & (6),$int _0^3 (t^2-3t+5),dt$[1cm] end{tabular} fparbox{13.5cm}{, $Tint{0}{3}{ x-1 }$ $Tint{0}{3}{ x-1 }=Tint{mkakko}{mkakko}{ x-1 }+Tint{mkakko}{mkakko}{ x-1 }=$ $ka,tint{mkakko}{mkakko}{(x-1)} ka,tint{mkakko}{mkakko}{(x-1)}$[2mm] $=,ka,seki{}{mkakko}{mkakko}$ $ ka,seki{}{mkakko}{mkakko}=ka$} item (1),$Tint{0}{3}{ x-2 }$hspace*{4cm} (2),$Tint{{-1}}{3}{ x^2-4x }$[3cm] fparbox{13.5cm}{$f(x) eq 0$ $y=f(x)$$x$$x=a,x=b$ $Tint{a}{b}{f(x)}=Tint{a}{b}{y}$} item,$x$ (1),$y=x^2+3,x=-3,x=1$hspace*{2.5cm}(2),$y=2x^2-x+3,x=2,x=5$ end{enumerate}

1 TEX 1 2 L A TEX TEX 1 3 L A TEX 1 3.1 L A TEX... 1 3.1.1... 2 3.1.2... 2 3.2 L A TEX... 2 3.2.1 enumerate... 2 3.2.2 enumerate... 3 3.3 LATEX... 3 3.3.1 tabular... 3 3.3.2 tabular... 4 3.3.3 tabular... 4 3.3.4... 4 3.4... 5 3.4.1 figure... 5 3.4.2 minipage... 5 3.5... 6 3.5.1... 6 3.5.2... 6 3.5.3... 7 3.5.4... 7 3.5.5 { }..... 7 3.5.6... 7 3.6 LATEX... 8 3.6.1... 8 3.6.2 newcommand... 10 3.6.3 def... 10 3.6.4... 10 3.6.5... 11 3.6.6... 12 3.6.7... 13 3.6.8... 14