untitled

Similar documents
1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

chap10.dvi

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

「産業上利用することができる発明」の審査の運用指針(案)

統計学のポイント整理

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

untitled

I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

untitled

201711grade1ouyou.pdf

untitled

sec13.dvi

6.1 (P (P (P (P (P (P (, P (, P.101

Microsoft Word - 表紙.docx

6.1 (P (P (P (P (P (P (, P (, P.


R R 16 ( 3 )

Part () () Γ Part ,

Chap10.dvi

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75

untitled

<4D F736F F D2092B28DB882C982C282A282C42E646F63>

³ÎΨÏÀ

?

[ ] =. =3.5 3 =.3 =. =0.30 : (f i ) u i u i f i u i f i

Microsoft Word - 99

chap9.dvi

, = = 7 6 = 42, =

: , 2.0, 3.0, 2.0, (%) ( 2.

2000年度『数学展望 I』講義録

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

Z: Q: R: C: sin 6 5 ζ a, b

volunteer_kobe

waseda2010a-jukaiki1-main.dvi

untitled

untitled

solutionJIS.dvi

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74

_TZ_4797-haus-local

I II III IV V

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

untitled

II 2 II

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

Chap9.dvi


i


Wide Scanner TWAIN Source ユーザーズガイド

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

<4D F736F F D2088CF88F589EF8E9197BF81698CA28E9490E78DCE816A2D312E646F63>

renshumondai-kaito.dvi

第1部 一般的コメント

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

ohpmain.dvi

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

power.tex

untitled

untitled

<4D F736F F D2088CF88F589EF8E9197BF816991E596EC927C A2E646F63>

第1章 国民年金における無年金

2016


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)


untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

Microsoft Word - ’ìfià„GflV‘é“ÄŁ]›¿0909.doc

chapter5

untitled

橡ミュラー列伝Ⅰ.PDF

koji07-01.dvi

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

<82CD82B582B28C4E20666F E646F7773>

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

st.dvi

untitled

i

< F31332D817992B48DC A8CCB8E9F81458CA28E942E6A7464>

Transcription:

17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1

1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y n f(y θ), ˆθ, ˆσ 2 =1/(nI(ˆθ)) n σ 2., I(θ) =E( log f(y θ)/ θ) 2 1. ˆσ 2 σ 2 = 1/ n l(y i=1 i ˆθ)., l(y θ) = 2 log f(y θ)/ θ 2. ˆθ,., (U 1,V 1 ),, (U n,v 1 ) ˆθ = Ū/ V θ = EU/EV., Ū = n i=1 U i/n, V = n i=1 V i/n., ˆθ ˆσ 2 = 1 (Ū ) 2 { S 2 u n V + (Ū)2 S2 v ( V ) 2 2S uv Ū V. Su 2 = n 1 n j=1 (U j Ū) 2, Sv 2 = n 1 n j=1 (V j V ) 2, S uv = n 1 n j=1 (U j Ū)(V j V )., ˆθ.,., ˆθ (4nf 2 (ˆθ)) 1,, f(θ).,,., ˆθ = Ū/ V,, ( 1 Ū S 2 ˆb = u n V Ū S ) uv (2) 2 Ū V. } (1) 1.2 θ ˆθ = ˆθ(Y 1,,Y n )., Y 1,,Y n, ˆθ Y 1,,Y n 2

. i Y i, ˆθ (i) = ˆθ(Y 1,,Y i 1,Y i+1,,y n ), ˆθ ( ) = n 1 n i=1 ˆθ (i), ˆbJ =(n 1)(ˆθ ( ) ˆθ). (3), θ = ˆθ ˆb J = nˆθ (n 1)ˆθ ( ) (4) ˆθ.,, ˆθ. E ˆθ = θ + a 1 /n + a 2 /n 2 + (5) a 1,a 2, n, b = a 1 /n + a 2 /n 2 + ˆθ., n 1 ˆθ (i),. E ˆθ (i) = θ + a 1 /(n 1) + a 2 /(n 1) 2 + (6) (5) (6), θ. E θ ] = E [nˆθ (n 1)ˆθ ( ) = θ + a 2 /(n(n 1)) + (7), θ a 2 /(n(n 1))+ = O(1/n 2 ) ˆθ a 1 /n+a 2 /n 2 + = O(1/n),. 1.3 ˆθ = Ȳ., ˆθ (i) =(nˆθ Y i )/(n 1), ˆθ( ) = ˆθ, ˆθ(i) ˆθ ( ) =(Ȳ Y i)/(n 1). ˆσ J 2 = n 1 n (ˆθ (i) n ˆθ ( ) ) 2 (8) i=1, ˆθ = Ȳ, ˆσ J 2 = n 1 n i=1 (Y i Ȳ ) 2 /(n 1), ˆθ σ 2 = n 1 Var(Y 1 )., ˆθ, (8) ˆσ J 2 ˆθ., ˆθ Y 1,,Y n. 2 2.1 F (y) Y 1,,Y n, n F n (y) =n 1 δ(y i y) 3 i=1

., δ(y i y), Y i y 1, 0. 4.6 n =20., Glivenko-Cantelli, n, F n (y) F (y)., E F F = F (y), ˆθ = ˆθ(Y 1,,Y n ) σ 2 = E F (ˆθ E F ˆθ) 2., F, σ 2., n, F F n = F n (y), ˆσ 2 = E Fn [ˆθ(Y 1,,Y n ) E F n ˆθ(Y 1,,Y n ) ] 2 (9) σ 2. Y 1,,Y n F n,. ˆθ = ˆθ(Y 1,,Y n ). 9 ˆσ 2,. 11.1 ˆθ = Ȳ = n j=1 Y j/n. ˆθ σ 2 = n 1 var Y 1 var Y 1 S 2 = n j=1 (Y j Ȳ )2 /n σ 2 n 1 S 2 /n, Ȳ Ȳ =(Y1 + + Yn )/n, E Fn Ȳ = Ȳ., ˆσ 2 = E Fn (Ȳ Ȳ ) 2 = n 1 S 2 n,,.,,,. 11.1 ( ) (i) y 1,,y n n n Y1 b,,y b n, ˆθ b b = ˆθ(Y 1,,Y b n ) (ii) (i) B ˆθ 1,, ˆθ B (iii) ˆσ 2 b = B (ˆθ b ˆθ ) 2 /(B 1). (10) b=1, ˆθ = B 1 B b=1 ˆθ b. (9) ˆσ 2 ˆσ 2 b B n, n B. 4

11.1 (, 1981) 11.1 (1/8 ) 188 96 168 176 153 172 177 163 146 173 186 168 177 184 96 161.53 27.95 139 163 160 160 147 149 149 122 132 144 130 144 102 124 144 140.60 15.86 11.1, (1) 11.2 B,,., ˆσ J 2 > ˆσ2 b. B 11.2 ( 11.1), B 100 0.0044 200 0.0049 500 0.0051 0.0053 0.0049 1000 0.0048 2000 0.0050 100 0.0383 200 0.0385 500 0.0418 0.0503 0.0291 1000 0.0385 2000 0.0371 2.2, b = E F ˆθ θ ˆb = EFn ˆθ(Y 1,,Y n ) ˆθ (11) 5

., ˆb ˆbb = B 1 B b=1 ˆθ(Y b 1,,Y b n ) ˆθ. (12) 11.2 ˆθ = n 1 n j=1 (Y j Ȳ ) 2 ˆθ b = σ 2 /n F n ˆθ [ ] n ˆb = EFn n 1 (Yj Ȳ ) 2 ˆθ j=1 = (n 1)n 1ˆθ ˆθ = n 1ˆθ ˆθ ˆθ, θ = ˆθ ˆb.,.,,,,. 3 3. 2 t 3 BC a 3.1 n, θ ˆθ. ˆσ 2 /n ˆθ,, n T = n(ˆθ θ)/ˆσ N(0, 1) 1 { } Pr n(ˆθ θ)/ˆσ t =Φ(t)+O(n 1/2 ) (13) 6

Φ(t) N(0, 1), O(n 1/2 ) n 1/2. z α N(0, 1) 100α Φ(z α )=α (13) Pr{θ ˆθ n 1/2ˆσz α } =1 α + O(n 1/2 ) (14), I =(, ˆθ + n 1/2ˆσz 1 α ) (14), Pr {θ I L } (1 α) =O(n 1/2 ). (15) 1 α I, 1 t, BC a I L Î 2.,. Pr{θ Î} (1 α) =O(n 1 ) (16) 3.2 (14) 1 n θ 1 α. 11.2 ( ) (i) y 1,,y n Y1,,Y n (ii) ˆθ = ˆθ(Y 1 ˆθ 1,, ˆθ B (iii) ˆθ α = ˆθ (αb) αb ˆθ (αb) ˆθ 1,, ˆθ B αb (ˆθ α, ) θ 1 α,,y n ) B 3.3 t ˆθ 7

t ˆθ ˆσ/ n (13) T = n(ˆθ θ)/ˆσ 1 T T 2 t 2 Pr{T t} = Φ(t)+n 1/2 p(t)φ(t)+o(n 1 ), Pr{T t} = Φ(t)+n 1/2ˆp(t)φ(t)+O p (n 1 ). p(t) 2 ˆp(t) p(t) Φ(t), φ(t), Pr{T t} Pr{T t} = O p (n 1 ) (17) Pr{T t} 2 T 100α w α T 100α 2 z α 1 Pr {θ ˆθ n 1/2ˆσw } α =1 α + O(n 1 ) (18) t (, ˆθ n 1/2ˆσw α ) 2 t (14) z α (18) T w α t 11.3 ( t ) (i) y 1,,y n Y 1,,Y n (ii) (i) ˆθ ˆσ ˆθ ˆσ (iii) t T = n(ˆθ ˆθ)/ˆσ B T1,,TB (iv) w α = T(αB) αb, T(αB) 11.2. (, ˆθ n 1/2ˆσw α ) 1 α 8

3.4 BC a, ˆθ, ˆθ, 1 BC a 2 z 0 a ˆθ ˆθ ˆθ z 0 =Φ 1 (Pr[ˆθ ˆθ]) ˆθ θ 1 Φ ˆθ ˆθ Pr[ˆθ ˆθ] =0.5 z 0 =0 z 0 ˆθ 1,, ˆθ B ẑ 0 =Φ ( {ˆθ 1 b < ˆθ}/B ) (19) a. ˆθ ( (2003) )) a ˆθ (i), i y i ˆθ, ˆθ ( ) = n 1 n ˆθ i=1 (i). a { n } 3/2 â = (ˆθ ( ) ˆθ n (i) ) 2 (ˆθ ( ) ˆθ (i) ) 3 /6. (20) i=1 11.4 (BC a ) 1. y 1,,y n Y1,,Yn 2. ˆθ = ˆθ(Y 1,,Yn ) ( B ) ˆθ 1,, ˆθ B,. 3. ẑ 0 â, (19) (20) 4. (ˆθ (ˆαB), ) θ 1 α α (0 < α<1) ˆα ( ) ẑ 0 + z α ˆα =Φ ẑ 0 +. (21) 1 â(ẑ 0 + z α ) 1 2α (ˆθ (ˆαB), ˆθ (d 1 αb) ), i=1 1 α (21) z α z 1 α BC a BC a 2 BC a ˆθ (ˆαB), ˆθ (d 1 αb) (21) â =0 ˆα =Φ(z α +2ẑ 0 ) â ẑ 0 0 ˆα = α 9

3.5 11.3 n =8, X i =, Y i =, i =1,,n, r = E(Y )/E(X). r 1 α [ a, a] (a>0), (α, a) =(0.1, 0.2) 11.3 (Efron & Tibshirani (1993, p.373) ) 1 17649 16449 9243 2 12013 14614 9671 3 19979 17274 11792 4 21816 23798 13357 5 13850 12560 9055 6 9806 10157 6290 7 17208 16570 12412 8 29044 26325 18806 11.3, ˆr =ȳ/ x = 0.0713 [ 0.2, 0.2], 11.1 ( ) B = 2000 ˆr, 11.1 ( ) 90% ( 0.208, 0.105), [ 0.2, 0.2] 2., BC a. 11.1 ( ) ẑ 0 =Φ { 1 (ˆr b < ˆr)/B } =0.029, ẑ 0 > 0 ˆr (20) â =0.024 α =0.05 ẑ 0,â ˆα =0.0634, 1 α =0.9619 ˆα + 1 α 1 BC a ( 0.201, 0.131),., 11.1 ( ), B = 2000 t T = n(ˆr ˆr)/ˆσ. ˆσ 2 (1). 10

, 90% t ( 0.226, 0.319), BC a., 2 4 3 0.3 2 0.2 1 0.1-0.11 0.11 0.33-18.25-13.25-8.25-3.25 1.75 11.1 11.3 B = 2000 ˆr = Ȳ / X ( ) T = n(ˆr ˆr)/ˆσ (ˆr = 0.0713). 4 11.2 x, y µ x, µ y t =( x ȳ)/ s 2 x /(m 1) + s2 y /(n 1) µ x = µ y x = m 1 m i=1 x i,ȳ = n 1 n j=1 y j s 2 x = m 1 m i=1 (x i x) 2,s 2 y = n 1 n j=1 (y j ȳ) 2 t =2.44, µ x = µ y t.,. x i = x i x + z, i =1,,m, y j = y j ȳ + z, j =1,,n z =(m + n) 1 (m x + nȳ) m n F m (x) =m 1 δ(x i x), G n(y) =n 1 δ(y j y) i=1. F m (x) F n (y) z,.,, F m X1,...,Xm G n Y1,...,Yn, t =( X Ȳ )/ S 2 x /(m 1) + S 2 11 j=1 y /(n 1)

X, Ȳ,Sx 2,S 2 y, t, p, p =Pr{ t t }. α, p α,,,., p,. ˆp = 1 B B δ ( t b t ). (22) b=1 B = 10000, (22) 11.1, ˆp =0.0406 α =0.05 1996, 2003 [1] Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application, Cambridge University Press: Cambridge. [2] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Chapman & Hall: New York. [3] (1990).,, 19, 137 162. [4] (1992).,, 21, 67 100. [5] (1993).,, 22, 257 312. [6], (1981). 2,,. [7],,, (1992).,, 19, 50 81. [8], (1996). 2,, 44, 3 18. [9], (2003)., 11, I,. 12