2 8 () (p s ) ( ) V 2 V 1 = I 1 I 2 = N 2 N 1. (8.1) V 1 V 2 I 1 I 2 N 1 N kv 100 V *1 1 V 1 I 1 = V 2 I 2 (8.2) 8.3 () ( ) v 1 = L 1

Similar documents
(1) (2) (3) (4) (1) 1 1


(2/32) AV OA 1-1 / / ferrite_ni-zn_material_characteristics_ja.fm

S1Šû‘KŒâ‚è

- - Warm Up

Parade-Parade 2003年サハリンツーリング

Cain & Abel

アンケート2

<8ED089EF8B D312D30914F95742E696E6464>

untitled

-2-

PowerPoint プレゼンテーション

24 Depth scaling of binocular stereopsis by observer s own movements

企業の信頼性を通じたブランド構築に関する考察

チョークコイル・リアクタ


2015-s6-4g-pocket-guidebook_H1-4.indd

L1 What Can You Blood Type Tell Us? Part 1 Can you guess/ my blood type? Well,/ you re very serious person/ so/ I think/ your blood type is A. Wow!/ G

国際恋愛で避けるべき7つの失敗と解決策

m m Satoshi SATO 48

A5 PDF.pwd

Hohenegger & Schär, a cm b Kitoh et. al., Gigerenzer et. al. Susan et. al.

‘¬”R.qx



% 32.3 DI DI







2 3 v v S i i L L S i i E i v L E i v 3. L urren (A) approx. 60% E = V = 0 Ω L = 00 mh urren (A) app

1 ( ) 1 1 ( ) 1!! Shinji Akematsu 1

untitled


音響部品アクセサリ本文(AC06)PDF (Page 16)

効率化計画冊子ファイナル.PDF

<82E682B15F8FBC88E48D828BB42E696E6464>


II

FC741E2_091201

open / window / I / shall / the? something / want / drink / I / to the way / you / tell / the library / would / to / me

P5_CS4


〈論文〉興行データベースから「古典芸能」の定義を考える

Otto Friedrich Bollnow,~

西川町広報誌NETWORKにしかわ2011年1月号

井手友里子.indd


Read the following text messages. Study the names carefully. 次のメッセージを読みましょう 名前をしっかり覚えましょう Dear Jenny, Iʼm Kim Garcia. Iʼm your new classmate. These ar

高2SL高1HL 文法後期後半_テキスト-0108.indd

09‘o’–

Microsoft Word - Win-Outlook.docx

05[ ]櫻井・小川(責)岩.indd

2 122

09[ ]鶴岡(責).indd


2 3

【人】⑥入谷好樹先生【本文】/【人】⑥入谷好樹先生【本文】



untitled

教育実践上の諸問題

現代社会文化研究

論文

スプリングプローブコネクタ、ライトアングルコネクタ

NINJAL Research Papers No.8


X


< D8291BA2E706466>

Webサービス本格活用のための設計ポイント

D d d c b a c x n cε c sε c c σ c sσ c n a c a t sε t sσ t n a t cε t cσ t S n = 0 ( ) 2 bd + n a 2 cdc + atd xn = bd + n ( ac + at ) n = n 1 I M = E

untitled

第5回東京都廃棄物審議会

西食堂


フィジカルコンディショニング

PowerPoint プレゼンテーション

支援リスト3/30.xls

untitled


P P P P

【人】⑧前田一平先生【本文】/【人】⑧前田一平先生【本文】


untitled

特別支援1~8ページ.PDF


2 3 2

300 10



(1) (2) (3) (4) (5) (6) (7) (8)


14 12 ( ) 2004

第1 予算編成の基本的な考え方

0

untitled


Transcription:

1 8 () ( ) 1 2 V, I, N 8.2 8.2 (primary) (secondary) 1 2 V 1 I 1 = V 2 I 2, V 2 V 1 = N 2 N 1. V 1 = ±jωl 1 I 1 ± jωmi 2, V 2 = ±jωmi 1 ± jωl 2 I 2, ± 8.1 () () 8.1 [1 3] 8.2 ( ) 8.1 (, ransformer, ) [1 3] i 1 i flux Φ 2 v 1 primary secondary v 2 ferromagneic core i 1 M i 2 v 1 L 1 L 2 v 2 8.2 Load

2 8 () (p s ) ( ) V 2 V 1 = I 1 I 2 = N 2 N 1. (8.1) V 1 V 2 I 1 I 2 N 1 N 2 500 kv 100 V *1 1 V 1 I 1 = V 2 I 2 (8.2) 8.3 () 8.3.1 8.3 ( ) v 1 = L 1 di 1 + M di 2, (8.3) v 2 = M di 1 + L 2 di 2. (8.4) i M 1 i 2 v 1 L 1 L 2 v 2 8.3 L 1 L 2 M di v 1 1 L 1 di 1 v 2 2 L 2 2 * 2 v 1 2 M di 2 v 2 1 M di 1 * 2 8.3.2 8.4 : L k di k (k = 1,2) (8.5) *1 *2

8.4. (DOT CONVENTION) 3 i i i 1 i 1 v 1 v 1 i 1 i 1 Φ Φ i 2 i 2 v 2 v 2 M di 1 L di 2 = + 2 v 2 v 2 M di 1 L di 2 = + 2 8.4 8.4 ( ) () di 2 v 2 = L 2 + M di 1 (8.6) 8.4 () () di 2 v 2 = L 2 M di 1 M (8.7) ( ) 8.4 (Do convenion) J. W. Nilsson and S. A. Riedel [4] When he reference direcion for a curren eners he doed erminal of a coil, he reference polariy of he volage ha i induces in he oher coil is posiive a is doed erminal. When he reference direcion for a curren leaves he doed erminal of a coil, he reference polariy of he volage ha i induces in he oher coil is negaive a is doed erminal. = = 8.5 = =

4 8 () i 1 M i 2 v 1 L 1 L 2 v 2 I 1 M I 2 di v 1 = 1 L 1 + di 1 v 2 = M + di 2 M di 2 L 2 V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 + jωmi 2 V 2 = jωmi 1 + jωl 2 I 2 8.7 8.5 ( ) 8.5 di/ ω i() I di = jωi (8.8) 8.6 ( ) *3 () ( 1 ) + *3 v v > 0 8.7 V 1 = jωl 1 I 1 + jωmi 2, (8.9) V 2 = jωmi 1 + jωl 2 I 2. (8.10)

8.7. K 5 8.6 How o + 8.6.1 L 1 L 2 ± V 1 = ±jωl 1 I 1 ± jωmi 2, (8.11) V 2 = ±jωmi 1 ±jωl 2 I 2. (8.12) V 1 I 1 (+jωl 1 I 1 ) ( jωl 1 I 1 ) V 2 I 2 (+jωl 2 I 2 ) ( jωl 2 I 2 ) 8.6.2 M ± V 1 = ±jωl 1 I1 ±jωmi 2, (8.13) V 2 = ±jωmi1 ± jωl 2 I 2. (8.14) () () V 1 ( (> 0) ) (+jωmi 2 ) ( jωmi 2 ) () () V 2 ( (> 0) ) (+jωmi 1 ) ( jωmi 1 ) 8.7 k k M k L 1 L 2 M = k L 1 L 2 ( k 1). (8.15) 1 8.8

6 8 () Loss i 1 i 2 v 1 v 2 L1 L 2 8.8 k M I 1 I 2 L 1 M L 2 M High loss in magneic flux Low loss in magneic flux V 1 M I 1 +I 2 V 2 8.10 k < 1 k 1 Loosely coupled Tighly coupled 8.9 () V 1 = jω(l 1 M)I 1 + jωm(i 1 + I 2 ), (8.18) V 2 = jω(l 2 M)I 2 + jωm(i 1 + I 2 ). (8.19) 8.10 k < 1 M k k < 1 k < 1 k 1 8.8 8.10 () 8.10 8.10 8.10 V 1 = jωl 1 I 1 + jωmi 2, (8.16) V 2 = jωmi 1 + jωl 2 I 2. (8.17) 8.9 8.11 ( ) Z 1 = V 1 /I 1 V 1 = jωl 1 I 1 + jωmi 2, (8.20) V 2 = jωmi 1 + jωl 2 I 2, (8.21) V 2 = Z 2 I 2. (8.22) Z 1 = V 1 I 1 = jωl 1 + ω2 M 2 jωl 2 + Z 2. (8.23) Z 2 = Ω Z 1 = jωl 1. (8.24)

8.11. () 7 M I 1 I 2 V 1 L 1 L 2 V 2 I 1 V 1 Z 2 Z 1 = jωl 1 + ω 2 M 2 jωl 2 + Z 2 L M 1 L 2 L M 1 L 2 L = L + L 2M + 1 2+ L = L + L 2M 1 2 8.13 8.11 I M 1 I 2 R 1 R 2 V 1 L 1 L 2 V 2 Z 2 I 1 V 1 Z 1 = R 1 + jωl 1 + ω 2 M 2 jωl 2 + R 2 + Z 2 8.12 8.14 (k ) M [5] Z 2 = 0 Ω ) Z 1 = jω (L 1 M2. (8.25) L 2 M 2 = k 2 L 1 L 2 k = 1 Z 1 = 0 8.12 ω 2 M 2 Z 1 = R 1 + jωl 1 +. (8.26) jωl 2 + R 2 + Z 2 8.10 ( ) 8.13 M L + L M 8.9 8.14 [5] 8.15 [6] 8.11 () 8.16 [7] 8.17

8 8 () J 2 L 2 W 2 M W 1 J 1 L 1 8.18 8.15 [6] I 1 L 1 +M V 1 I 2 V 2 L 1 L 1 +L 2 +2M 8.19 W 1 = V 1, (8.27) W 2 = V 2 V 1 (8.28) J 1 = I 1 I 2 (8.29) J 2 = I 2. (8.30) 8.16 [7] 8.18 W 1 = jωl 1 J 1 + jωmj 2, (8.31) I 2 I 2 W 2 = jωmj 1 + jωl 2 J 2. (8.32) V 1 I 1 V 2 I 1 V 1 I 1 I 2 I 2 L 2 V 2 V 1 M V 2 L 1 V 1 = jωl 1 (I 1 + I 2 ) + jωmi 2, (8.33) V 2 V 1 = jωm(i 1 + I 2 ) + jωl 2 I 2. (8.34) 8.17 V 1 = jωl 1 I 1 + jω(l 1 + M)I 2, (8.35) V 2 = jω(l 1 + M)I 1 + jω(l 1 + L 2 + 2M)I 2 (8.36) 8.19 8.10 T 8.20 8.20 8.10

8.12. 9 I 2 I 2 M L 1 +M I 1 L 2 +M M V 2 V 2 L 1 +L 2 +2M V 1 L 1 +M I 1 V 1 L 1 L 1 L 1 L 2 =M 2 /L 1 L 1 :M 8.20 T M:L 2 (c) L 2 8.21 8.22 L 1 L 1 : M (c) L 2 M : L 2 8.12 V 2 = nv 1, (8.37) I 2 = I 1 n. (8.38) n n = N 2 /N 1 n L 1 L 2 M () 1 () R L C 8.21 8.12.1 V 1 I 1 = V 2 n ni 2 = V 2I 2 (8.39) Z 1 = V 1 I 1 = 1 n 2 V 2 I 2 = 1 n 2 Z 2 (8.40) 8.12.2 8.22 8.23

10 8 () M L 1 L 2 L 1 M 2 /L 2 = (1 k 2 )L 1 M L 1 =M 2 /L 2 =k 2 L 1 L 2 (c) M L 2 M 2 /L 1 = (1 k 2 )L 2 L 1 L 2 =M 2 /L 1 =k 2 L 2 8.23 L 1 M 2 /L 2 = (1 k 2 )L 1 M:L 2 (c) L 1 =M 2 /L 2 =k 2 L 1 8.24 L 1 M 2 /L 2 M:L 2 L 2 (c) M:L 2 (L 1 L 2 M 2 )L 2 /M 2 L 2 8.24 ( 8.23) (c)

8.12. 11 (1a) (1b) 8.25 8.25 +jωl 1 I 1 +jωl 2 I 2 +jωl 1 I 1 *4 jωl 2 I 2 +jωmi 2 +jωmi 2 V 1 = +jωl 1 I 1 +jωmi 2 (8.41) V 1 = +jωl 1 I 1 +jωmi 2 (8.43) +jωmi 1 jωmi 1 V 2 = +jωl 2 I 2 +jωmi 1 (8.42) V 2 = jωl 2 I 2 jωmi 1 (8.44) I 1 M I 2 V 1 L 1 L 2 V 2 I 1 M I 2 V 1 = jωl 1 I 1 + jωmi 2 V 2 = jωmi 1 + jωl 2 I 2 V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 + jωmi 2 V 2 = jωmi 1 jωl 2 I 2 8.25 (1) *4 ()

12 8 () (2a) (2b) 8.26 8.26 +jωl 1 I 1 +jωl 2 I 2 +jωl 1 I 1 *5 jωl 2 I 2 jωmi 2 jωmi 2 V 1 = +jωl 1 I 1 jωmi 2 (8.45) V 1 = +jωl 1 I 1 jωmi 2 (8.47) jωmi 1 +jωmi 1 V 2 = +jωl 2 I 2 jωmi 1 (8.46) V 2 = jωl 2 I 2 +jωmi 1 (8.48) I 1 M I 2 V 1 L 1 L 2 V 2 I 1 M I 2 V 1 = jωl 1 I 1 jωmi 2 V 2 = jωmi 1 + jωl 2 I 2 V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 jωmi 2 V 2 = jωmi 1 jωl 2 I 2 8.26 (2) *5 ()

8.12. 13 (3a) (3b) 8.27 8.27 +jωl 1 I 1 *6 jωl 2 I 2 +jωl 1 I 1 +jωl 2 I 2 jωmi 2 jωmi 2 V 1 = +jωl 1 I 1 jωmi 2 (8.49) V 1 = +jωl 1 I 1 jωmi 2 (8.51) +jωmi 1 V 2 = jωl 2 I 2 +jωmi 1 (8.50) jωmi 1 V 2 = +jωl 2 I 2 jωmi 1 (8.52) I 1 M I 2 V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 jωmi 2 V 2 = jωmi 1 jωl 2 I 2 I 1 M I 2 V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 jωmi 2 V 2 = jωmi 1 + jωl 2 I 2 8.27 (3) *6 ()

14 8 () (4a) 8.28 8.28 ( 8.28 ) +jωl 1 I 1 +jωl 2 I 2 +jωmi 2 V 1 = +jωl 1 I 1 +jωmi 2 (8.53) +jωmi 1 V 2 = +jωl 2 I 2 +jωmi 1 (8.54) L 1, L 2, M V 2 = nv 1 (8.55) V 1 = jωl 1 I 1 + jωmi 2, (8.55) V 2 = jωmi 1 + jωl 2 I 2 (8.56) I 1 = V 1 jωmi 2 jωl 1 (8.57) (8.56) V 2 = jωl 2 I 2 + M L 1 V 1 jωm2 L 1 I 2 (8.58) (M = L 1 L 2 ) L1 L 2 V 2 = jωl 2 I 2 + V 1 jωl 1L 2 I 2 L 1 L 1 L 2 = V 1 = nv 1 (8.59) L 1 n = L 2 /L 1 *7 I 2 = I 1 /n I 1 = V 1 jωmi 2 jωl 1 (8.60) I 1 = V 1 jωmi 2 jωl 1 = V 1 jωl 1 M L 1 I 2 (8.61) I 1 M I 2 V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 + jωmi 2 V 2 = jωmi 1 + jωl 2 I 2 I 1 M I 2 (M = L 1 L 2 ) n = L 2 /L 1 I 1 = V 1 L 2 I 2 jωl 1 L 1 = V 1 jωl 1 ni 2 (8.62) V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 + jωmi 2 V 2 = jωmi 1 + jωl 2 I 2 L 1 I 1 = ni 2 (8.63) 8.28 (4) *7 [8]

8.12. 15 n 0 n = L2 /L 1 L 1 L 2 L 2 M = L 1 L 2 M

16 8 () e = L di. (8.64) i L e ( ) (8.64) 8.29 v = L di (8.65) 8.30 i di + e (c) di e i e (d) i e i i+di Posiive direcion of he volage should be like his, if he volage of his elemen is regarded as elecromoive force. (c) B i i B B+dB B+dB e i+di i+di di > 0 db > 0 di e = L Elecromoive force o supress increase of i 8.29 Which is correc? (c) (d) i+di di e = L i+di di e = L If we wrie like his, e does no suppress increase of i. This does no correspond o he self-inducion heory, in which e should suppress he increase of i. Since e should suppress he increase of i, e should be expressed like his. 8.30

17 i di e = L The volage is reaed as elecromoive force. i di v = L The volage is reaed as volage drop. 8.31 8.31 e = L di (8.66) 8.31 v = L di (8.67) ( ) : ± M di k (k = 1,2) (8.68) + [1] di 1 > 0 [2] +

18 8 () [1] di 2 > 0 [2] + M M 8.32 M M I 1 MI 2 V 1 L 1 L 2 V 2 I 1 M I 2 V 1 L 1 L 2 V 2 V 1 = jωl 1 I 1 + jω( M)I 2 V 2 = jω( M)I 1 + jωl 2 I 2 V 1 = jωl 1 I 1 + jωm I 2 V 2 = jωm I 1 + jωl 2 I 2 M = M < 0 8.32 (5) [9] 1. Arbirarily selec one erminal say, he D erminal of one coil and mark i wih a do. 2. Assign a curren ino he doed erminal and label i i D. 3. Use he righ-hand rule o deermine he direcion of he magneic field esablished by i D inside he coupled coils and label his field ϕ D. 4. Arbirarily pick one erminal of he second coil say, erminal A and assign a curren ino his erminal, showing he curren as i A. 5. Use he righ-hand rule o deermine he direcion of he flux esablished by i A inside he coupled coils and label his flux ϕ A. 6. Compare he direcions of he wo fluxes ϕ D and ϕ A. If he fluxes have he same reference direcion, place a do on he erminal of he second coil where he es curren (i A ) eners. (In he Figure, he fluxes ϕ D and ϕ A have he same reference direcion, and herefore a do goes on erminal A.) If he fluxes have differen reference direcions, place a do on he erminal of he second coil where he es curren leaves.

19 8.33 Nilsson Riedel [9] I B 8.34 8.34

20 8 () [1] ( 1) 8.35 v 2 v 2 L 2 di 2 / L k di k / (k = 1,2) 1. (di 1 / > 0) 2. 3. 4. 5. ±Mdi 1 / 6. ( ) v 2 > 0 7. 8. 9. 10. v 2 v 2 > 0 v 2 +Mdi 1 / [2] ( 2) 8.35 v 2 v 2 v 1 i 1 Φ i 2 v 2 v 1 i 1 Φ i 2 v 2 i i 1 v 2 M di 1 L di 2 = + 2 i i 1 v 2 M di 1 L di 2 = + 2 8.35 ( 1) 8.36 ( 2)

21 1. (di 1 / > 0) 2. 3. 4. 5. ±Mdi 1 / 6. ( ) v 2 > 0 7. 8. 9. 10. v 2 v 2 > 0 v 2 Mdi 1 /

22 8 () A. 8.37 V 1 V 2 I 1 I 2 jωm j1 Ω 4 Ω I 1 I 2 6 90 V V 1 j8 Ω j5 Ω V 2 10 Ω 8.37. (8.74) (10 + j5) I 1 = I 2 = (5 j10)i 2. (8.75) j (8.75) (8.73) j6 = (4 + j8)(5 j10)i 2 ji 2 = (100 j)i 2 100I 2. 100 1 j *8 I 2 = j6 100 = j0.06 = 0.0600 90 A 60.0 90 ma. (8.75) V 1 = j8i 1 j1i 2, (8.69) V 2 = j1i 1 + j5i 2. (8.70) B. 8.37 V 1 V 2 I 1 I 2 3 (8.69), (8.70) 4 4 I 1 = (5 j10) j0.06 = 0.6 + j0.3 = 0.6708 26.57 = 0.671 26.6 A 671 26.6 ma. V 2 V 2 = 10I 2 = j0.6 = 0.600 90.0 V. V 1 (8.71) V 1 = j6 4I 1 = j6 4 (0.6 + j0.3) = 2.4 + j4.8 = 5.366 116.5 = 5.37 117 V. j6 V 1 = 4I 1, (8.71) V 2 = 10( I 2 ). (8.72) (8.71) (8.69) V 1 (8.72) (8.70) V 2 j6 = (4 + j8)i 1 ji 2, (8.73) 0 = ji 1 + (10 + j5)i 2. (8.74) *8 A + B B A 1/100 A + B = A

23 [1] hp://g-gauge.world.coocan.jp/ransfmr.hm [2] hp://blog.livedoor.jp/2000k/archives/50603462.hml [3] hp://www.meppi.com/transformerfacory/pages/defaul.aspx [4] J. W. Nilsson and S. A. Riedel: Elecric circuis 10h Ediion (Pearson Educaion, Harlow, 2015) p.212. [5] hp://www.cp-ip.or.jp/ ishida96/ih-aichi/isan_wo_aruku/1996/1996-06_yosamisoshinsho.hml [6] hp://www.marinloganowners.com/forum/showhread.php?4263-build-my-own-crossover [7] hp://hoplaza.soundhouse.co.jp/how_o/ligh/choukou/index.asp [8], : (,, 1970) pp. 281-282. [9] J. W. Nilsson and S. A. Riedel: Elecric circuis 10h Ediion (Pearson Educaion, Harlow, 2015) p.213.