: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Similar documents
Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

JFE.dvi

空力騒音シミュレータの開発

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

p12.dvi

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

原著2_川那辺.indd

プラズマ核融合学会誌11月【81‐11】/小特集5

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

平常時火災における消火栓の放水能力に関する研究

兵庫県立大学学報vol.17

HAJIMENI_56803.pdf

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

untitled

( ) 2. ( ) 1. 1, kg CO2 1 2,000 kg 1 CO2 19 % 2,000 2, CO2 (NEDO) (COURSE50) 2008 COURSE50 CO2 CO2 10 % 20 %

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

SEJulyMs更新V7

n-jas09.dvi

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

Numerical Analysis II, Exam End Term Spring 2017


4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

97-00


DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

F7-10 エンジンの Design of F7-10 High Bypass Turbofan Engine for P-1 Maritime Patrol Aircraft 空 部 ス 部 空エンジン 部 空 部 ス 部 空エンジン 部 F7-10 エンジン の P-1 の ファン エンジン 部

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.

untitled

スケーリング理論とはなにか? - --尺度を変えて見えること--

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

燃焼シンポジウム論文募集

Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

dsample.dvi

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

KENZOU Karman) x

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

J. Jpn. Inst. Light Met. 65(6): (2015)

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

研究成果報告書

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

平成○○年度知能システム科学専攻修士論文

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

DEIM Forum 2009 E

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

IV (2)

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Fig. 1 Experimental apparatus.



Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

MPC MPC R p N p Z p p N (m, σ 2 ) m σ 2 floor( ), rem(v 1 v 2 ) v 1 v 2 r p e u[k] x[k] Σ x[k] Σ 2 L 0 Σ x[k + 1] = x[k] + u[k floor(l/h)] d[k]. Σ k x

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

四変数基本対称式の解放

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

GJG160842_O.QXD

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

第6章_田辺.PDF

A03-2.dvi

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

Tf dvi

1 1 CodeDrummer CodeMusician CodeDrummer Fig. 1 Overview of proposal system c

04-“²†XŒØ‘�“_-6.01

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

yasi10.dvi

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [



01.Œk’ì/“²fi¡*

Transcription:

15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp, 4-6-1 E-mail: kobaya@iis.u-tokyo.ac.jp, ( ) 1-1 E-mail:imamura a@khi.co.jp, ( ) 1-1 E-mail:tsuru t@khi.co.jp Takuji TOMINAGA, School of Mechanical Engineering, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo Nobuyuki TANIGUCHI, Information Technology Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo Yuichi ITOH, Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo Toshio KOBAYASHI, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo Akira IMAMURA, Kawasaki Heavy Industries, LTD., 1-1 Kawasaki-cho, Akashi-city, Hyogo Tomoko TSURU, Kawasaki Heavy Industries, LTD., 1-1 Kawasaki-cho, Akashi-city, Hyogo A large eddy simulation (LES) and a G-equation based on flamelet concept are demonstrated in engineering design for a premixed aircraft gas-turbine combustor. G-equation model is extended for combustion in a non-uniform equivalent ratio of premixed gas. The simulations of the flame propagation are executed in some conditions with different relations of the equivalent ratios, and as a result, the flame positions and propagating behaviors depend on the equivalent ratios. 1. 2. 1 Fig.1 16 NOx Large Eddy Simulation (LES) G LES 1 G flamelet [1][2] G Fig.1: The combustor and the one sector model Copyright c 21 by JSCFD

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) 3. 4.2 x i a u i ρ p P T u ν τ ij S c ν SGS S csgs S ij : (= P ρ ) : Schmidt : SGS : Schmidt LES s L : S : = {( i,j (S2 ij )} 1 2 G ξ s L s T δ φ main φ pilot r R : s L (ξ, T,...) s L (ξ) (6) : : : s L (ξ) : : : : : ξ t + u jξ = {( ν + ν ) } SGS ξ (7) x j x j S c S csgs x j 4. G flamelet : i (i = 1, 2, 3) G G G < G : a G > G G 1 : i G =.5 LES : G G : t + u jg = s L G (u j G u j G) (5) x j x j : : G s : L : s : LES L Müller et al. [4] RANS (5) 2 4.1 G LES 1 s T u i t + u iu j = p + ( ν u ) i τ ij (1) x j x i x j x j s L G = s T G (8)

{ } s T (u /s L ) 2 = exp s L (s T /s L ) 2 (9) u = S (1) s T (9) Yakhot et al. [7] u s T (s T /s L ) 2 s L u (1) (5) 2 (u j G u j G) = ν SGS σ G G x j (11) 5.2 σ G SGS σ G σ G =.25 PIV [6] ( ) δ free-slip g 2.663 (12) s L g = S (13) g (13) LES δ Göttgens et al. [8] Tab.2 5. Tab.1 Tab.1: Computational condition Reynolds Number 596 Pressure P(MPa).113 Temperature T(K) 623 Fuel Methane-Air Equivalent ratio φ main.4,.6 5.1 φ pilot.7 Fig.2 22 (91 4 61) 37 5.3 (151 4 61) 59 Fig.2: Computational grid Tab.2: Computational method Method for flow field (LES Kogaki(1999)) Coupling algorithm fractional step method ( t = 2. 1 6 [sec]) SGS model Smagorinsky model (C S =.1) Spatial differential scheme Second-order central differential scheme Time advancing scheme (advection term) Second-order Adams-Bashforth scheme (diffusion term) Crank-Nicolson scheme Stabirizing method 6th-order explicit filter Method for flame propagation (Scalar G) Spatial differential scheme (advection term) QUICK (diffusion term) Second-order central differential scheme Time advancing scheme Second-order Adams-Bashforth scheme 5.4 2 G ξ 37step HITACHI SR8(

1 node(8cpu) 12 6. 6.1 2 Fig.3.5.6.7.8 8 LES <u> LES on(2) on(2) 6 Exp.on(2) <u> Exp.on(2) 4 2.5.6.7.8.9 1 Fig.4: The axial velocity at the center of a sector Fig.5: The tangential velocity at the center of a sector Fig.3 37step Fig.4 Fig.5 Fig.4 ( =.65.7) Fig.4 ( =.75 1) Fig.5 ( =.6.7) Fig.5 8 6 4 <u> LES on(1) <u> Exp.on(1) 5 <w> LES LES on(1) on(1) 4 <w> Exp.on(1) Exp.on(1) 3 2 1-1 -3.5.6.7.8 5 <w> LES on(2) LES on(1) on(2) 4 Exp.on(2) <w> Exp.on(1) Exp.on(2) 3 2 1-1 -3 Fig.3: Contours of the instantaneous axial velocity.5.6.7.8.9 1

=.95 free-slip Mach NEDO 6.2 Tab.1 2 [1] Menon, S., Large-eddy simulation of combustion instabilities, Proceedings of the Sixth International Confer- 2 1 ence on Numerical Combustion, 1996-3 φ pilot =.7 φ main =.4 [2],,, 67-659, B(21), pp. 169-1616 1 φ pilot =.7 φ main =.6 [3],,, 21 Fig.7 [4] Müller, C. M., Breitbach, H., and Peters, N., Twenty- G Fifth Symposium (International) on Combustion / The 12ms 6ms G Combustion Institute, pp. 199-116, 1994 [5],, φ pilot =.7, p. 15, 1999. [6] 63-69, B(1997), pp. 186-1813 φ main =.4 G [7] Yakhot, V., Propagation Velocity of Premixed Turbulent Flames,Combustion Science and Technology, Vol.6,1988 φ main =.6 [8] Göttgens, J., Mauss, F. and Peters, N., Twenty-Fourth G >.5 Symposium (International) on Combustion / The Combustion Institute, pp. 129-135, 1992. 6 [9],,, 65-633, B(1999), pp. 1559-1567 7. LES G 8.

Fig.6: Time evolution of flame (Contour of scalar G) (φ main =.4 φ pilot =.7) Fig.7: Time evolution of flame (Contour of scalar G) (φ main =.6 φ pilot =.7)