Microsoft Word - 15.宮崎貴紀子

Similar documents
H10Masuki


第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

倉田.indd

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Field Observations of Aeolian Sand Transport Rate Using a Piezoelectric Ceramic Sensor This study conducted field observations in terms of the number

untitled

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

II III II 1 III ( ) [2] [3] [1] 1 1:

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

J. Jpn. Inst. Light Met. 65(6): (2015)



立命館21_川端先生.indd

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

経済論集 46‐2(よこ)(P)☆/2.三崎


untitled

Medical Journal of Aizawa Hospital

暑熱順化の形成過程に関する研究 : サーモグラフィ装置によるヒト発汗部皮膚温測定

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

砂浜砕波帯における流れと地形変化

日本看護管理学会誌15-2

Microsoft Word - 00_1_表紙.doc

空力騒音シミュレータの開発

KII, Masanobu Vol.7 No Spring


土木学会構造工学論文集(2011.3)

スポーツ教育学研究(2013. Vol.33, No1, pp.1-13)

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

九州大学学術情報リポジトリ Kyushu University Institutional Repository 看護師の勤務体制による睡眠実態についての調査 岩下, 智香九州大学医学部保健学科看護学専攻 出版情報 : 九州大学医学部保健学

pdf

0701073‐立命‐社会システム15号/15‐9-招待-横井


橡

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

HAJIMENI_56803.pdf

Hz

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

技術研究報告第26号

untitled

Japanese Journal of Applied Psychology

JFE.dvi

Transcription:

1 2 3 1 12-83 2-14-2 NK E-mail: umeda@wec.or.jp 2 163-73 2-7-1 3 3ADCP ADCP1 Key Words: destratification system, intrusion, ADCP, reservoir, water quality, water bloom 1) 1),2),3) 11),12) 13) 1m 14) 4m 2 4),5),6),7) 15) 16) Lorenzen and Mitchell 8) 9)

ADCP (Acoustic Doppler Current Profiler) 1973 47.3 1 6 m 3 1988 17) 1999 4 21 4 8 3.7Nm 3 /min 図 -1.5 m 3 /s 4.38 m 3 /s 1km 4.31m 3 /s 22m 3 /s ADCP T1 5m T4 T5 A1 T3 A2 222m 232m El.242m a) ADCP(Acoustic Doppler Current Profiler : RD- Instruments 6kHz 21 7 21 図 -1 T1 T5 2 5m 1 ACL-2PDK b) 図 -1A1 A3 21 8 17 1 1 ADCP ADCP 1m Onset StowAway Tidbit ADCP 図 -2 1 ADCP 図 -3 ADCP ADCP 図 -2 ADCP 図 -2 T2 N A3 図 -1

El.242.9m [EL.m] 243. 242.5 242. El.224m ADCP El.223m -4 5m 75m 図 -2 A1 5m [m 3 /s] [m 3 /s] 2 1 2 1 7/2 7/21 7/22 7/23 図 -4 5m 図 -3 14) ADCP 7 ADCP 図 -1 2 -A1 8m -A2 15m c) KW-I a ph.5m 2.5m 2.5m 8 a) 2 6 6 29 図 -4 1m 3 /s 9 21m 3 /s 3m/s 図 -6 13m 2m 223m b) 図 -5(a) -T1 ADCP

18) 図 -5(a) -1 2 8-4 4 1m -4 3m 図 -7 3 4 3 A B 2 A 1m B 2 3m A B B 14) 2 B 227 m A 図 -5(a) 図 -5(b) -T2-5 6 2-6 1m 22.5 図 -6 232m [El. m] 22 [ ] 15 2 25 3 (242.7m) (223m) T1 T5 A2 図 -6-1 -2-3 -4 [m] 22 2 4 6-5 図 -5(a) T1-6 [m] 2 4 6 8 5-1 [m] 1 [cm/s] -5 22 [m] 図 -6(b) T2

N カラム A カラム B EL.239.7m 4 3.2 [m/s].2.2 [m/s].2 EL..7m EL..7m.1m/s A B 3m 図 -7 23-6 7m 図 -5(a)-5 a) 図 -8 Chl-a Chl-a 8.5m ph 9 図 -1 8 4-2,4,5,8 8 EL.223.m.5m 9 6 7 ( 84 m 3 /s, 19) β=.39) 9 15 16 ( 478m 3 /s, β=1.16) a 1µg/l 2 3µg/l ph Chl-a b) 図 -98 23 31 -A1 図 -9 図 -5 図 -9b) 図 -1 8 27 223m 図 -9b)

[m3/s] [m] [m] 8 6 4 2 8/17 8/27 9/6 9/16 9/26 8 4 25 25 1 Water Temperature Chl-a a) ダム諸量 [m 3 /s] [m] 25 2 15 1 5 b) 流速分布 ( 測点 -A1) 8/23 8/25 8/27 8/29 8/31 c) 流速分布 ( 測点 -A2) ph [ ] 8 6 3 2 1 8/17 8/27 9/6 9/16 9/26 図 -8 図 -9 c) A2 A2 A1 5 -A2-8 -A1 c) [m] 8/23 8/25 8/27 8/29 8/31-15 -1-5 5 1 15 [cm/s] 図 -9 8 -A1 A2 [ ] 2 25 3 [El. m] (241.6m) (223m) 22 図 -1 -A1 8 27 図 -119 15 A1 9 21 9 19

a) ダム諸量 25 2 15 1 5 [m 3 /s] b) 流速分布 ( 測点 -A1) a) ダム諸量 1 8 6 4 2 [m 3 /s] b) 流速分布 ( 測点 -A1) [m] [m] 9/17 9/19 9/21 9/23 9/25 c) 水温分布 ( 測点 -A1) [m] 21 2 2 19 9/17 9/19 9/21 9/23 9/25 図 -11 -A1 21 9 21 図 -9 図 -11c) 9 21 3m 2 3 d) 2 図 -12 9 6 9/6 9/8 9/1 9/12 9/14-15 -1-5 5 1 15 [cm/s] 図 -12 -A1 9 7 4 図 -12 9 11-11 ADCP 8 21 8 図 -

9 図 -13 8 27 13 ADCP 図 -13 図 -14a) 図 -14a) 図 -14b) 図 -14c) A-1.2m 8 3 31 12) 2) 21) [cm/s] 5 5 [m] 図 -13 ADCP a) 2 A1 図 -15 9 11 21 16 24 48 表 -1 48 9 11 22.21 19.5 2 3m 3 /s -A1 A2 A3 3 図 -16 9 11 16 8 12

[El.m] [ ] [m 3 /s] 2 1 29 28 27 a) b) c) A 1 [El. m] 2 21 22 23 24 25 26 245 22 9/11 16: 9/12 16: 9/13 16: 18 19 2 21 22 23 24 245 26 8/23 8/25 8/27 8/29 8/31 図 -14 図 -16 3m 3 /s Asaeda et al. 22) 1/5 g Qw( z) =.32Q B z 2 Q (1) B Q W [m 3 /s] Q B [m 3 /s] z [m] g [m/s 2 ] Q B =3.7[m 3 /min] z =7.5[m] g=9.8[m/s 2 ] Q W =2.2[m 3 /s] z 表 -1 4 223m (1) 1.5 4/3 [El. m] 22 9/21 16: 9/22 16: 9/23 16: 図 -15 A1 9 11 9 22 A1 A3 A3 (1) 22) b)

[h] 表 -1 [ ] [m] [m] [m 3 ] [m 3 /s] 21/9/11 48 22. 234.1 227.5 4.45 1 6 8 3.2 21/9/22 48 19.5 234. 226.3 4.8 1 6 8 3.5 [El.m] [ ] [ ] 2 22 24 262 22 24 26 21/9/11 16: 21/9/12 : 22 A1 A2 A3 図 -16 ADCP 図 -1721 7 21 -T3 T4 T5 表 -2 (1) 8.1m 3 /s 4 2 (1) 12) (1) 4 表 -2 1 4 4 (1) 表 -2 4 ADCP 図 -17 ADCP 4 QI = UiRi z (2) i Q I i U i i z ADCP.5m U i 図 -13 R i i 図 -17 T3 28m R i 28m 8 23 8 31 図 -1832m 3 /s (1) 4 表 -2 4

[El.m] [El.m] [El.m] [cm/s] 1 5-5 -1 22 a) T3 1 2 3 22 b) T4 1 2 22 c) T5 1 2 [m] 図 -17 表 -2 図 -18 15 2m 3 /s 図 -18 図 -11 図 -12 図 -18 表 -2 T3 T4 T5 (3) (5) 12) 23) E t1 z1 E = ρ ( T ) gz A( z) dzdt (3) t z e ( ) e= ( t t ) ρ( T) Q gh ln 1+ z H (4) 1 B A A [m 3 /s] 表 -2 ADCP 21/7/21 T3 37 m 3 /s 21/7/21 T4 29 m 3 /s 21/7/21 T5 33 m 3 /s 5 4 3 2 1 8/23 8/25 8/27 8/29 8/31 図 -18 ADCP η η = Ee (5) ρ(t, T) t T [kg/m 3 ] A(z) z [m 2 ] H T +[m] z [m] H A [m] η N[1/s] P N 3 4 NHT PN = (6) Qg B 図 -19 23) 2 図 -2 9 11 16 22 16 (4) 8 図 -11 3 図 -2 12.1.15 図 -19 4

η.2.15.1.5 P N 1 1 1 1 2 1 3 1 4 図 -19 3.3 図 -5-4 233.8m 239m 9/11 16:.1 9/12 16: 9/13 9/14 16: 16: 3.2m 1 2 3 9/21 16:.1 [ ] 9/22 16: 9/23 16: 15 1 2 3 [ ] 1) 2) 3) 25 2 9/24 16: 25 2 [ ] [ ] 図 -2 9 11 9 22

1) Asaeda, T., Priyantha, D. G. N., Saith, S. and Gotoh, K. A new technique for controlling algal blooms in the withdrawal zone of reservoirs using vertical curtains Ecological Engineering Vol.7 pp.95 14, 1996. 2) No. 143 pp.71 81 1998 3) No. 181 pp. 89 1 21 4) Vol. 26 pp. 837 844 1984 5) Vol. 27 pp. 773 779 1985 6) Vol. 39 pp. 191 2 22 7) Vol. 13, pp. 5 18 23 8) Lorenzen, M. and Mitchell, R.: Theoretical effects of artificial destratification on algal production in impoundments, Environmental Science & Technology, Vol. 7, pp. 939 944, 1973. 9) 9 3F-P47 pp.3-33 21 1) Vol. 26, pp. 285 293 23 11) McDougall, T. J.: Bubble plumes in stratified environments, Journal of Fluid Mechanics, Vol. 85, pp. 655 672, 1978. 12) Asaeda, T. and Imberger, J.: Structure of bubble plumes in linearly stratified environments, Journal of Fluid Mechanics, Vol. 249, pp. 35 57, 1993. 13) Vol. 32, pp. 251 256 1988 14) Vol. 37 pp. 271 276 1993 15) Vol. 38 pp. 319 324 1994 16) Vol. 47 pp. 1243 1248 23 17) No. 193 pp. 88 94 22 18) ADCP Vol. 41 pp. 141 146 1997 19) 18 pp.187-192 1974 2) Vol.43 pp.1216-122 21) 411 /II-12 pp.247-254 1989 22) Asaeda, T., Imberger, J., and Ikeda, H. Bubble plume behavior in twolayered environmentsvol.2 pp.19 32 199 23) Imberger, J. Bubble Plume 411 / -12 pp.15 112 1989 (24. 3. 22 受付 )

FIELD MEASUREMENTS OF FLOW FIELD CAUSED BY DESTRATIFICATION SYSTEM IN A DAM RESERVOIR Makoto UMEDA, Kikuko MIYAZAKI and Seiji TOMIOKA Field measurements were conducted to investigate hydraulic environmental changes caused by destratification systems. The measurements were designed to observe the following three points: 1) spatial distribution of flow field using a ADCP equipped to a boat. 2) time series of current profile at stations near bubblers. 3) water temperature monitoring to observe thermal stratification. These observations revealed interesting behaviors of intrusion. The depth of intrusion responses to diurnal changes of surface water temperature because of the entrainment around water surface. Flow volume of intrusion was influenced by all the bubble plumes and their accompanying current.