Microsoft Word - 15.宮崎貴紀子

Similar documents
DVIOUT-ajhe

H10Masuki

AUTOMATIC MEASUREMENTS OF STREAM FLOW USING FLUVIAL ACOUSTIC TOMOGRAPHY SYSTEM Kiyosi KAWANISI, Arata, KANEKO Noriaki GOHDA and Shinya


Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

倉田.indd

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Field Observations of Aeolian Sand Transport Rate Using a Piezoelectric Ceramic Sensor This study conducted field observations in terms of the number

untitled

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

, 18, Observation of bedforms in the downstream reach of Rumoi River by using a brief acoustic bathymetric system Ryosuke AKAHORI, Yasuyu

II III II 1 III ( ) [2] [3] [1] 1 1:

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

NewsLetter-No2

untitled

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

I II III IV V

J. Jpn. Inst. Light Met. 65(6): (2015)

立命館21_松本先生.indd



立命館20_服部先生.indd




立命館16_坂下.indd



立命館人間科学研究No.10



立命館21_川端先生.indd

立命館14_前田.indd

立命館17_坂下.indd


立命館人間科学研究No.10


立命館19_椎原他.indd

立命館人間科学研究No.10

立命館19_徳田.indd


北海道体育学研究-本文-最終.indd


2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録


経済論集 46‐2(よこ)(P)☆/2.三崎


untitled

PDF変換用(報告書)帯広市新エネルギービジョ

Field Measurement of Aeolian Sand Flux over a Sand Dune Slope Junaidi Keiko UDO, Shota MITSUSHIO, JUNAIDI, Shin-ichi AOKI, Shigeru KATO and Akira MANO

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

B2 Vol. B2-65 No High-frequency Field Measurements of Aeolian Sand Transport Rate at a Beach Keiko UDO This study conducted field obser

第6章_田辺.PDF

Vol.7 No.2 ( ) in mm m/s 40 m/s 20 m/s m/s 20m/s 1999 US ,

2013SuikoMain.dvi

Medical Journal of Aizawa Hospital

07_学術.indd

暑熱順化の形成過程に関する研究 : サーモグラフィ装置によるヒト発汗部皮膚温測定

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

Jahs. 47(2): (2017)

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

砂浜砕波帯における流れと地形変化

日本看護管理学会誌15-2

Microsoft Word - 00_1_表紙.doc

空力騒音シミュレータの開発

KII, Masanobu Vol.7 No Spring


空気の屈折率変調を光学的に検出する超指向性マイクロホン

土木学会構造工学論文集(2011.3)

スポーツ教育学研究(2013. Vol.33, No1, pp.1-13)

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Microsoft Word - GPS2017.docx

九州大学学術情報リポジトリ Kyushu University Institutional Repository 看護師の勤務体制による睡眠実態についての調査 岩下, 智香九州大学医学部保健学科看護学専攻 出版情報 : 九州大学医学部保健学

pdf

0701073‐立命‐社会システム15号/15‐9-招待-横井


橡

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

HAJIMENI_56803.pdf

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

untitled

Hz


7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

技術研究報告第26号

untitled

Japanese Journal of Applied Psychology

Bull. Cent. Astron. Univ. Hyogo 3, (2015) VTOS 1 1 * Speckle observations of Betelgeuse and its neighbor stars using Visual Target Obser

Adult Attachment Projective AAP PARS PARS PARS PARS Table

JFE.dvi

I I Evaluation of Fragility Functions for Tsunami Damage in Coastal District in Natori City, Miyagi Prefecture and Mitigation Effects of Coastal Dune

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Transcription:

1 2 3 1 12-83 2-14-2 NK E-mail: umeda@wec.or.jp 2 163-73 2-7-1 3 3ADCP ADCP1 Key Words: destratification system, intrusion, ADCP, reservoir, water quality, water bloom 1) 1),2),3) 11),12) 13) 1m 14) 4m 2 4),5),6),7) 15) 16) Lorenzen and Mitchell 8) 9)

ADCP (Acoustic Doppler Current Profiler) 1973 47.3 1 6 m 3 1988 17) 1999 4 21 4 8 3.7Nm 3 /min 図 -1.5 m 3 /s 4.38 m 3 /s 1km 4.31m 3 /s 22m 3 /s ADCP T1 5m T4 T5 A1 T3 A2 222m 232m El.242m a) ADCP(Acoustic Doppler Current Profiler : RD- Instruments 6kHz 21 7 21 図 -1 T1 T5 2 5m 1 ACL-2PDK b) 図 -1A1 A3 21 8 17 1 1 ADCP ADCP 1m Onset StowAway Tidbit ADCP 図 -2 1 ADCP 図 -3 ADCP ADCP 図 -2 ADCP 図 -2 T2 N A3 図 -1

El.242.9m [EL.m] 243. 242.5 242. El.224m ADCP El.223m -4 5m 75m 図 -2 A1 5m [m 3 /s] [m 3 /s] 2 1 2 1 7/2 7/21 7/22 7/23 図 -4 5m 図 -3 14) ADCP 7 ADCP 図 -1 2 -A1 8m -A2 15m c) KW-I a ph.5m 2.5m 2.5m 8 a) 2 6 6 29 図 -4 1m 3 /s 9 21m 3 /s 3m/s 図 -6 13m 2m 223m b) 図 -5(a) -T1 ADCP

18) 図 -5(a) -1 2 8-4 4 1m -4 3m 図 -7 3 4 3 A B 2 A 1m B 2 3m A B B 14) 2 B 227 m A 図 -5(a) 図 -5(b) -T2-5 6 2-6 1m 22.5 図 -6 232m [El. m] 22 [ ] 15 2 25 3 (242.7m) (223m) T1 T5 A2 図 -6-1 -2-3 -4 [m] 22 2 4 6-5 図 -5(a) T1-6 [m] 2 4 6 8 5-1 [m] 1 [cm/s] -5 22 [m] 図 -6(b) T2

N カラム A カラム B EL.239.7m 4 3.2 [m/s].2.2 [m/s].2 EL..7m EL..7m.1m/s A B 3m 図 -7 23-6 7m 図 -5(a)-5 a) 図 -8 Chl-a Chl-a 8.5m ph 9 図 -1 8 4-2,4,5,8 8 EL.223.m.5m 9 6 7 ( 84 m 3 /s, 19) β=.39) 9 15 16 ( 478m 3 /s, β=1.16) a 1µg/l 2 3µg/l ph Chl-a b) 図 -98 23 31 -A1 図 -9 図 -5 図 -9b) 図 -1 8 27 223m 図 -9b)

[m3/s] [m] [m] 8 6 4 2 8/17 8/27 9/6 9/16 9/26 8 4 25 25 1 Water Temperature Chl-a a) ダム諸量 [m 3 /s] [m] 25 2 15 1 5 b) 流速分布 ( 測点 -A1) 8/23 8/25 8/27 8/29 8/31 c) 流速分布 ( 測点 -A2) ph [ ] 8 6 3 2 1 8/17 8/27 9/6 9/16 9/26 図 -8 図 -9 c) A2 A2 A1 5 -A2-8 -A1 c) [m] 8/23 8/25 8/27 8/29 8/31-15 -1-5 5 1 15 [cm/s] 図 -9 8 -A1 A2 [ ] 2 25 3 [El. m] (241.6m) (223m) 22 図 -1 -A1 8 27 図 -119 15 A1 9 21 9 19

a) ダム諸量 25 2 15 1 5 [m 3 /s] b) 流速分布 ( 測点 -A1) a) ダム諸量 1 8 6 4 2 [m 3 /s] b) 流速分布 ( 測点 -A1) [m] [m] 9/17 9/19 9/21 9/23 9/25 c) 水温分布 ( 測点 -A1) [m] 21 2 2 19 9/17 9/19 9/21 9/23 9/25 図 -11 -A1 21 9 21 図 -9 図 -11c) 9 21 3m 2 3 d) 2 図 -12 9 6 9/6 9/8 9/1 9/12 9/14-15 -1-5 5 1 15 [cm/s] 図 -12 -A1 9 7 4 図 -12 9 11-11 ADCP 8 21 8 図 -

9 図 -13 8 27 13 ADCP 図 -13 図 -14a) 図 -14a) 図 -14b) 図 -14c) A-1.2m 8 3 31 12) 2) 21) [cm/s] 5 5 [m] 図 -13 ADCP a) 2 A1 図 -15 9 11 21 16 24 48 表 -1 48 9 11 22.21 19.5 2 3m 3 /s -A1 A2 A3 3 図 -16 9 11 16 8 12

[El.m] [ ] [m 3 /s] 2 1 29 28 27 a) b) c) A 1 [El. m] 2 21 22 23 24 25 26 245 22 9/11 16: 9/12 16: 9/13 16: 18 19 2 21 22 23 24 245 26 8/23 8/25 8/27 8/29 8/31 図 -14 図 -16 3m 3 /s Asaeda et al. 22) 1/5 g Qw( z) =.32Q B z 2 Q (1) B Q W [m 3 /s] Q B [m 3 /s] z [m] g [m/s 2 ] Q B =3.7[m 3 /min] z =7.5[m] g=9.8[m/s 2 ] Q W =2.2[m 3 /s] z 表 -1 4 223m (1) 1.5 4/3 [El. m] 22 9/21 16: 9/22 16: 9/23 16: 図 -15 A1 9 11 9 22 A1 A3 A3 (1) 22) b)

[h] 表 -1 [ ] [m] [m] [m 3 ] [m 3 /s] 21/9/11 48 22. 234.1 227.5 4.45 1 6 8 3.2 21/9/22 48 19.5 234. 226.3 4.8 1 6 8 3.5 [El.m] [ ] [ ] 2 22 24 262 22 24 26 21/9/11 16: 21/9/12 : 22 A1 A2 A3 図 -16 ADCP 図 -1721 7 21 -T3 T4 T5 表 -2 (1) 8.1m 3 /s 4 2 (1) 12) (1) 4 表 -2 1 4 4 (1) 表 -2 4 ADCP 図 -17 ADCP 4 QI = UiRi z (2) i Q I i U i i z ADCP.5m U i 図 -13 R i i 図 -17 T3 28m R i 28m 8 23 8 31 図 -1832m 3 /s (1) 4 表 -2 4

[El.m] [El.m] [El.m] [cm/s] 1 5-5 -1 22 a) T3 1 2 3 22 b) T4 1 2 22 c) T5 1 2 [m] 図 -17 表 -2 図 -18 15 2m 3 /s 図 -18 図 -11 図 -12 図 -18 表 -2 T3 T4 T5 (3) (5) 12) 23) E t1 z1 E = ρ ( T ) gz A( z) dzdt (3) t z e ( ) e= ( t t ) ρ( T) Q gh ln 1+ z H (4) 1 B A A [m 3 /s] 表 -2 ADCP 21/7/21 T3 37 m 3 /s 21/7/21 T4 29 m 3 /s 21/7/21 T5 33 m 3 /s 5 4 3 2 1 8/23 8/25 8/27 8/29 8/31 図 -18 ADCP η η = Ee (5) ρ(t, T) t T [kg/m 3 ] A(z) z [m 2 ] H T +[m] z [m] H A [m] η N[1/s] P N 3 4 NHT PN = (6) Qg B 図 -19 23) 2 図 -2 9 11 16 22 16 (4) 8 図 -11 3 図 -2 12.1.15 図 -19 4

η.2.15.1.5 P N 1 1 1 1 2 1 3 1 4 図 -19 3.3 図 -5-4 233.8m 239m 9/11 16:.1 9/12 16: 9/13 9/14 16: 16: 3.2m 1 2 3 9/21 16:.1 [ ] 9/22 16: 9/23 16: 15 1 2 3 [ ] 1) 2) 3) 25 2 9/24 16: 25 2 [ ] [ ] 図 -2 9 11 9 22

1) Asaeda, T., Priyantha, D. G. N., Saith, S. and Gotoh, K. A new technique for controlling algal blooms in the withdrawal zone of reservoirs using vertical curtains Ecological Engineering Vol.7 pp.95 14, 1996. 2) No. 143 pp.71 81 1998 3) No. 181 pp. 89 1 21 4) Vol. 26 pp. 837 844 1984 5) Vol. 27 pp. 773 779 1985 6) Vol. 39 pp. 191 2 22 7) Vol. 13, pp. 5 18 23 8) Lorenzen, M. and Mitchell, R.: Theoretical effects of artificial destratification on algal production in impoundments, Environmental Science & Technology, Vol. 7, pp. 939 944, 1973. 9) 9 3F-P47 pp.3-33 21 1) Vol. 26, pp. 285 293 23 11) McDougall, T. J.: Bubble plumes in stratified environments, Journal of Fluid Mechanics, Vol. 85, pp. 655 672, 1978. 12) Asaeda, T. and Imberger, J.: Structure of bubble plumes in linearly stratified environments, Journal of Fluid Mechanics, Vol. 249, pp. 35 57, 1993. 13) Vol. 32, pp. 251 256 1988 14) Vol. 37 pp. 271 276 1993 15) Vol. 38 pp. 319 324 1994 16) Vol. 47 pp. 1243 1248 23 17) No. 193 pp. 88 94 22 18) ADCP Vol. 41 pp. 141 146 1997 19) 18 pp.187-192 1974 2) Vol.43 pp.1216-122 21) 411 /II-12 pp.247-254 1989 22) Asaeda, T., Imberger, J., and Ikeda, H. Bubble plume behavior in twolayered environmentsvol.2 pp.19 32 199 23) Imberger, J. Bubble Plume 411 / -12 pp.15 112 1989 (24. 3. 22 受付 )

FIELD MEASUREMENTS OF FLOW FIELD CAUSED BY DESTRATIFICATION SYSTEM IN A DAM RESERVOIR Makoto UMEDA, Kikuko MIYAZAKI and Seiji TOMIOKA Field measurements were conducted to investigate hydraulic environmental changes caused by destratification systems. The measurements were designed to observe the following three points: 1) spatial distribution of flow field using a ADCP equipped to a boat. 2) time series of current profile at stations near bubblers. 3) water temperature monitoring to observe thermal stratification. These observations revealed interesting behaviors of intrusion. The depth of intrusion responses to diurnal changes of surface water temperature because of the entrainment around water surface. Flow volume of intrusion was influenced by all the bubble plumes and their accompanying current.