ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

Similar documents
x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Gmech08.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

振動と波動

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


meiji_resume_1.PDF

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

( ) ( )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

K E N Z OU

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d


05Mar2001_tune.dvi


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

I 1

Gmech08.dvi

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

B ver B

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

dynamics-solution2.dvi

LLG-R8.Nisus.pdf

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Note.tex 2008/09/19( )

phs.dvi

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

構造と連続体の力学基礎

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

untitled

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

b3e2003.dvi

chap1.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Korteweg-de Vries


A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

08-Note2-web

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

sec13.dvi

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

chap03.dvi

pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

all.dvi

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

数学演習:微分方程式

i


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t


第10章 アイソパラメトリック要素

85 4

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

all.dvi

Transcription:

K E N Z OU 8 9 8. F = kx x 3 678

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx, (ω = k/)... x = A exp(iωt), x = A exp( iωt) A, A.3 e iθ = cosθ + i sin θ x = A exp(iωt) + A exp( iωt) (.3) x = (A + A )cosωt + i(a A )sinωt (.4) x (A + A ), i(a A ) A, A A = Ā, A = Ā ξ, η,.4 A = (ξ + iη), A = (ξ iη) (.5) x = ξ cos ωt η sin ωt = ( ) ξ + η ξ η cos ωt ξ + η ξ + η sin ωt. = A(cos α cos ωt sin α sin ωt) = A cos(ωt + α) ( A = ξ + η, α = tan (η/ξ)) A ω [rad/sec] α [rad] ωt + α [rad] f [Hz] f = ω/π) T [sec] T = /f = π/ω) (.6) θ. θ = ω θ, (ω = g/l, g :, l ) (.7)

T A A T (T = π l/g) rad rad [rad] rad. E k E k = ẋ, U = k(x x) (.8) x = U = kx W. ẋ... W = E k + U = ẋ + kx (.9) W.9 ẋẍ kẋ = d [ ẋ + kx ] = dt ẋ + kx = W = const (.) W = ω A sin (ωt + α) + ka cos (ωt + α) = ω A (.) A < E k >, < U > < E k >= T < U >= T T T... < E k >=< U > ẋ dt = T kx dt = T T T ω A sin (ωt + α)dt = 4 ω A = 4 ka ka cos (ωt + α)dt = 4 ω A = 4 ka Galileo Galilei 564-64 3

.3 U(x) x = x x U(x) x U(x) = U(x ) + (x x )U (x ) + (x x ) U (x ) + (x x ) 3 U (x ) + (.)! 3! x = x U (x ) = U (x ) > (x x ) 3 U (x) U(x) U(x ) + U (x ) (x x ) (.3) U(x).3 ẍ = d U(x) (.4) ẍ = U (x )(x x ) (.5) ω = U (x )/, x x = x ẍ = ω x (.6) F F = U U = k cosh x Fig. F ig. y y = cosh x = (e x + e x )/ e x = + x + (/)x + e x = x + (/)x + x.4 ẍ = d d U(x) = k cosh x = k d (ex + e x ) = k (ex e x ) (.7) x e x e x x = e x = + x + (/)x +, e x = x + (/)x + U(x ), U (x ) 4

ẍ = k ( + x + + x ) = kx (.8) ω = k/ T T = π/ω T W W = ( ) + U(x) dt dt = {W U(x)}/.. x. t = + const (.) W U(x) 3. W U(x) x = A x = A V (x) x W U(x) = (x A )(A x)v (x), (A > A ) (.) x = A x = A T/ T = A A A W U(x) A (x A )(A x)v (x) (.3) x = (A + A ) (A A ) cos φ, ( φ π).3 = (/)(A A ) sin φdφ W U(x) = (A A )V (x) sin φ, (A > A ) T = A A = π dφ (.4) W U(x) V (x) 3 Huygens) 3 5

F ig. y ds = + dy = a cos(θ/)dθ a ds θ gy s = θ ds = 4a sin(θ/) = ay y = a ( s ) πa πa x T. ṡ dt = / s ds = θ a cos(θ/)dθ / = θ a cos(θ/)dθ / W U(s) W U(s) ṡ (3.) W U ax x U(s) E k W = U ax = ga U(s) = gy = g a ( s ) E k = ( ) ds = W U(x) = ga g ( s ) dt a ṡ ( ṡ = 4ga g ( 4a s) / = 4ga sin θ ) = ga cos θ 3. θ π T/ π a cos(θ/) a π a T/ = ga cos(θ/) dθ = dθ = π g g.. a. T = 4π g (3.) (3.3) ω ω = π T = g a http://ebers.jco.hoe.ne.jp/sheer-heart-attack/ (3.4) 4 4. θ = g l sin θ = ω sin θ, (ω = g/l) (4.) 6

sin θ = θ θ3 3! + θ5 5! (4.) 3 θ = ω θ F ig.3 y E k = (/)(ẋ + ẏ ) U = gl cos θ θ l T ẍ = g T cos θ ÿ = T sin θ = θ = (g/l) sin θ x = l cos θ y = l sin θ ẍ = l( φ sin φ + φ cos φ) ÿ = l( φ cos φ φ sin φ) x g W W = E k + U W = ( ) l θ gl cos θ = l θ ω cos θ (4.3) 4. θ θ θ = ω sin θ θ d dt ( ) θ ω cos θ = (4.4) E E = θ ω cos θ E l 4.3 4.4 t = θ = θ, θ = θ = ω (cos θ cos θ )... θ = ω sin (θ /) sin (θ/) (4.5) cos φ = sin (φ/) θ = θ = θ θ t = T/4 t = T 4 = θ ω sin (θ /) sin (θ/) dθ = ω π/ dφ (4.6) a sin φ sin(θ /) = a, sin(θ/) = a sin φ dθ = (/ a sin φ )dφ φ θ φ θ = φ = θ = θ φ = π/ T T = 4 ω K(a) = π/ π/ a sin φ dφ = 4 K(a) (4.7) ω dφ (4.8) a sin φ 7

4.8 coplete elliptic integral 4 a sin φ = + a sin φ + 3 4 a4 sin 4 φ + 5 3 6 4 a6 sin 6 φ + = n= (n )!! a n sin n φ (n)!!!! n 6!! = 6 4 = 48 π/ T K(k) = π/ sin n θdθ = π T = 4 ω K(k) = π ω a sin φ dφ = π (n ) (n 3) 3 n (n ) 4 = π (n )!! n!! { + 4 a + 9 a 4 + 5 } 64 56 a6 + [ + 4 a + 9 a 4 + 5 ] ( ) θ 64 56 a6 +, a = sin T θ a a a T T h T h = π/ω, T = (4/ω)K(k) T/T h = (/π)k(k) 4.9 3 3 θ 5 θ T/T h θ T/T h θ T/T h θ T/T h. 3.74.348 3.738 5.48 4.334 5.48 4.37.9 5.4978.9 5.494 5.43 6.738 5.43 6.79.767 8.3749.767 8.73 5.3 9.834 5. 9.66 θ T/T h θ 79 θ (4.9) T Th Π T Th Π Φ, a sin Θ a sin Φ 4 3.5 3.5.5.5.5.5 3 Θ 4 Karl Gustav Jakob Jacobi(84 85 89 8

θ 5 3 x Matheatica For[ =Degree, <=9Degree, = +5Degree,a=Sin[ /]^;Ans=N[(/Pi)*ElliptickK[a]]; Print[{,Ans}]] Plot[EllipticK[Sin[ /]*(/Pi),{,,79Degree},PlotStyle->Thickness[.4], Ticks->{Table[ Degree,{ Degree,Degree,8Degree,Degree}],Autoatic}, AxesLabel->{"θ ",T/Th},PlotLavel->StyleFor["T/Th=(/ )K(a),a=sin(θ /), K(a)= (π/) a dφ, sin φ FontFaily->"Ties",FontSize->4,FontWeight->"Bold"]] 4. F = ẍ = (αx + βx 3 ), α >, β (4.) Duffing equation 5 β β > β < Fig.4 U(x, β) = (/)αx + (/4)βx 4 F = ẍ = d U = αx βx3 (4.) F ig.4 F β > β = F = ẍ = (αx + βx 3 ), (α > ) W = E k + U β < x U = (/)αx + (/4)βx 4 t = ± p / Z x p W U(x) x = A x = A A T β 5 4. sinθ = θ θ 3 /3! + θ 5 /5! θ = ω (θ θ 3 /6) 9

F ig.5 U U = (/)αx + (/4)βx 4, (β > ) U ax = (/)αa + (/4)βA 4 (β < ) A v(x) A x x v(x) dt dt = /v x = A x = A t T / t = T/ = A A v(x) (4.) v(x) W x = A U ax (A, β) = W = αa + 4 βa4 (4.3) x E k (x, β) W U(x, β) E k (x, β) = W U(x, β) = αa + 4 βa4 αx + 4 βx4 E k (x, β) = (/)v 4. = α(a x ) + 4 β(a4 x 4 ) (4.4) { = (A x ) α + } 4 β(a + x ) (4.5) T = A T β β > β = T / A = T A v(x) = E k (x, β)/ (4.6) A v(x) = / (4.7) A Ek (x, β) β < β = T / A = T T W = ( ) + U(x) dt dt = ± {W U(x)}/... x dt = ± {W U(x)}/ (4.8) T

4.8 dt = ± x {W U(x)} = ± φ dφ V (x)/ (4.9) 3 Hailton x = a, a (a > ) W U(x) = (a x )V (x) (4.) x E U(x) = x = a, (a > ) a W αa 4 βa4 =,... W = αa + 4 βa4 (4.) V (x) = Ax + Bx + C W U(x) = αa + 4 βa4 αx 4 βx4 = (a x )(Ax + Bx + C) (4.) x A, B, C A = 4 β, B =, C = α + 4 βa... V (x) = 4 {α + β(x + a )} (4.3) V (x) W U(x) W U(x) = W αx 4 βx4 = 4 (a α + a 4 β αx βx 4 ) = 4 (a x ){α + β(a + x )} x t = ± = ± x W U(x) (a x ){α + β(a + x )} = ± ϕ a sin ϕdϕ a sin ϕ (α + βa k sin ϕ ϕ = ± α + βa dϕ k sin ϕ

4. T π/ dϕ T = 4 α + βa k sin ϕ = 4 K(k) (4.4) α + βa k k = βa ( + a ) β T T = 4 K() = π α α = π, ω ( ω = α/ ) (4.5) α/ t t β/α x x α s = t t y = β/α x x /ds = x, d x/ds = x ( ) x(t) = x /α s, ẋ = ( ) /α x /α s, ẍ(t) = ( ) α x /α s ẍ(t) = α d y ds = d ( dy ds α β (y + y3 ) 4. ) = ds β d x β α ds = β α α ẍ = α 4.6 (/dt) t dt dt = (x + x3 ) dt d dt d α α α β (y + y3 ) = (y + y 3 ) ẍ = (x + x 3 ) (4.6) ( ) = d ( dt dt x + ) 4 x4 ( ) ( = W dt x + ) 4 x4 = W U(x) (4.7) W U(x) = x + 4 x4 (4.8) 4.7 dt = ± (W U(x)) t = ± x (4.9) W U(x) E U(x) x E U(x) = x = a, (a > ) E a 4 a4 = a = + + 4E (4.3)

E U(x) = E x 4 x4 = (a x )V (x) (4.3) V (x) x V (x) = Ax + Bx + C x E x 4 x4 = (a x )(Ax + Bx + C) A = 4, B =, C = a + 4 4.9 x = a cos ϕ = a sin ϕdϕ t = ± x (a x )( + a + x ) = ± + a ϕ dϕ k sin ϕ (4.3) (4.33) k = a ( + a ) k T T = 4t = 4 π/ + a T W U(x) = W αx 4 βx4 = 4 (a α + a 4 β αx βx 4 ) dϕ k sin ϕ = 4 kk(k) (4.34) a = 4 (a x ){α + β(a + x )}... t = ± = ± ϕ x = ± α + βa = ± x W U(x) a sin ϕdϕ a sin ϕ (α + βa k sin ϕ ϕ T T = 4 α + βa k dϕ k sin ϕ π/ k = (a x ){α + β(a + x )} dφ k sin ϕ = 4 K(k) (4.35) α + βa βa ( + a ) ẍ = (αx + βx 3 ) = 6 βx 3 ẍ + ω x + βx 3 =, ω = α (4.36) ω x βx 3 6 α/ α, /β β t = x = a, ẋ = 3

3 ẍ + ω x = x = a cos ωt 4.36 ω p x = a cos pt (4.37) ω (ω p ) (4.38) ω 4.36 ω = p + (ω p ), (4.39) ẍ + p x = (ω p )x βx 3 (4.4) 4.37 4.4 4.4 3 7 ẍ + p x = (ω p )a cos ωt βa 3 cos 3 pt = {a(ω p ) + 34 } βa3 cos pt 4 βa3 cos 3pt (4.4) ẍ + p x = f cos pt (4.4) ẍ + ω = F cos ωt x = a cos(ω t + α) + F ω cos ωt ω ω = ω 4.4 x = a cos(pt + α) + f p cos ωt (4.43) p 4.4 cos pt p p a(ω p ) + 3 4 βa3 = p = ω + 3 4 a β (4.44) 4.4 ẍ + p x = 4 βa3 cos 3pt (4.45) 7 cos3θ = 4cos 3 θ 3 cos θ 4

8 A x = Acos3pt (4.46) ( 9p A + p A) cos 3pt = 4 βa3 cos 3pt A = βa3 3p (4.47) ẍ + p x = c c c cos pt + c sin pt x = c cos pt + c sin pt + Acos3pt = c cos pt + c sin pt + βa3 cos 3pt 3p c, c t ẋ = pc sin pt + pc cos pt 3βa3 3p c, c t = x = a a = c + βa3 3p c = a βa3 3p t = ẋ = = pc c = sin 3pt (4.48) x = ) (a βa3 3p cos pt + βa3 cos 3pt (4.49) 3p T = π/p p p = ω + (3/4)a β (4.5) β > β < secular ter β cos 3pt 3 4.5 4.49 } ω = p + C β, C : (4.5) x = ϕ (t) + βϕ (t) β x = ϕ + βϕ + β ϕ + β 3 ϕ 4 ω = p + C β + C β + x = ϕ + βϕ + β ϕ + } (4.5) 8 5

β 4.4 C, C,, p ϕ, ϕ, ϕ x 4.5 4.4 β 3 ( 4 ϕ + β ϕ + β ϕ + β 3 ϕ 3 + p (ϕ + βϕ + β ϕ + β 3 ϕ 3 ) = ϕ + p ϕ + β( ϕ + ϕ ) + β ( ϕ + ϕ ) + β 3 ( ϕ 3 + ϕ 3 ) (4.53) = {βc ϕ + β (C ϕ + C ϕ ) + β 3 (C 3 ϕ + C ϕ + C ϕ )} (4.54) {βϕ 3 + β (3ϕ ϕ ) + β 3 (3ϕ ϕ + 3ϕ ϕ )} (4.55) = {β(c ϕ + ϕ 3 ) + β (C ϕ + C ϕ + 3ϕ ϕ ) (4.56) +β 3 (C 3 ϕ + C ϕ + C ϕ + 3ϕ ϕ + 3ϕ ϕ )} (4.57) β β ϕ + p ϕ = ϕ + p ϕ = C ϕ ϕ 3 t = x = a, ẋ = ϕ + p ϕ = C ϕ C ϕ 3ϕ ϕ ϕ 3 + p ϕ 3 = C 3 ϕ C ϕ C ϕ 3ϕ ϕ 3ϕ ϕ ϕ () + βϕ () + β ϕ () + β ϕ 3 () = a ( ϕ ) t= + β( ϕ ) t= + β ( ϕ ) t= + β 3 ( ϕ 3 ) t= = (4.58) (4.59) β ϕ () = a, ( ϕ ) t= ϕ () =, ( ϕ ) t= ϕ () =, ( ϕ ) t= ϕ 3 () =, ( ϕ 3 ) t= (4.6) 4.58 ϕ + p ϕ = ϕ (t) = a cos pt + const 4.6 const = ϕ (t) = a cos pt (4.6) 4.58 ϕ + p ϕ = C a cos pt cos 3 pt = (C a + 34 a3 ) cos pt 4 a3 cos 3pt cos pt C C a + 3 4 a = C = 3 4 a (4.6) ϕ ϕ + p ϕ = 4 a3 cos 3pt 6

4.45 4.6 ϕ = ϕ 4.5 a3 (cos 3pt cospt) (4.63) 3p x = ϕ + βϕ = a cos pt + βa3 (cos 3pt cospt) 3p (4.64) ) = (a βa3 3p cos pt + βa3 cos 3pt 3p (4.65) p = ω + 3 4 a β (4.66) 3 ϕ = a cos pt, ϕ = a3 3p (cos 3pt cospt), C = 3 4 a (4.67) 4.58 3 ) ϕ + p ϕ = C a cos pt ( 3a a 3 4 3p (cos 3pt cospt) 3a cos pt a3 (cos 3pt cospt) 3p = C a cos pt + a5 8p (cos3 pt cos pt) a5 3p cos pt(cos 3 pt cos pt) ) = (C a + a5 8p cos pt + 6a5 8p cos3 pt 48a5 8p cos5 pt ) = (C a + a5 8p cos pt + 3a5 8p ( cos3 pt 6 cos 5 pt) = (C a + a5 8p ) cos pt + 3a5 (5 cos pt cos 5pt) 8p ) = (C a 3a5 8p cos pt 3a5 cos 5pt (4.68) 8p cos pt C = 5 9 cos 5θ = 6 cos 5 θ cos 3 θ + 5 cos θ 4.68 x = A cos 5pt 4.7 A 3a4 8p (4.69) ϕ + p ϕ = 3a5 cos 5pt (4.7) 8p ϕ + p ϕ = 5Ap cos 5pt + Ap cos 5pt = 3a5 cos 5pt 8p... A = a5 4p (4.7) 9 3 4 cos 4θ = 4 sin θ cos θ 8 sin 3 θ cos θ, sin 4θ = 4 sin θ cos θ 8 sin 3θ cos θ, sin θ 5 sin 5θ = 6 sin 5 θ sin 3 θ + 5 sin θ 7

t = ϕ () =, 4.7 3 ϕ (t) = C cospt + C sin pt + a5 cos 5pt (4.7) 4p4 ϕ () = C, C a5 C = 4p 4, C = ϕ (t) = a5 cos pt + a5 cos 5pt (4.73) 4p4 4p4 x = ϕ + βϕ + β ϕ = (a βa3 3p β a 5 ) 4p 4 cos pt + βa3 3p cos 3pt + β a 5 cos 5pt 4p4 p = ω C β C β = ω + 3 4 a β 3a4 8p β 4 p p p p = A ± B p 3 Fig.5 3 F ig.5 x ω =, a =, β =. x = a βa3 x = 3p β a 5 4p 4 a βa3 cos pt + βa3 cos 3pt 3p 3p cos pt + βa3 3p cos 3pt + β a 5 4p 4 cos5pt x = a cos ωt t T ( = ) a =, α =, β =. 4 /(α + βa ) K(k),.88 π/ α, (α ω ) 6.839 π/ α + 3 4 a β 3.459 3 π / α + 3 4 a β + (α + 3 a αβ + 5a4 3 β ) / 3.8 3 (!!) 8

4.36 L ẍ + ω x + βx 3 = (4.74) L = (ẋ ω x ) β 4 x4 (4.75) L x ( d l ) ẋ = 4.74 β x = A cos ω t β ω I I = t t Ldt δi = δ t t Ldt = (4.76) x x = A cos ωt δi t, t t t A x I = π/ω Ldt = π A ω (ω ω) 3 π 6 ω A4 β (4.77) F ig.6 A x = A cos ωt t t ωt ω = ω + (3/4)A β δi = I A I A = ( π ω ω 3 ) ω 4 A β = ω = ω + 3 4 A β A ω 4.5 9

( ) G OOD L U C K! S E E Y OU A G A I N!