Traffic Demand (Gb/s) ADSL ISDN ADSL 8M B ( ) ADSL 12M ( ) 0 3 Future HIKARI (Photonic)

Similar documents
Traffic Demand (Gb/s) ADSL ISDN ADSL 8M B ( ) ADSL 12M ( ) 0 3 Future HIKARI (Photonic)

Katsuhito Asano Fujitsu LTD /Apr/2002 1

total.dvi

橡MPLS-Japan-shared-fastreroute.PDF

<4D F736F F F696E74202D2082AF82A282CD82F182C C94AD955C8E9197BF2E707074>

橡3-MPLS-VPN.PDF

Motivation 3 Motivation 4 (Availability) Keep High Availability Providing Reliable Service (New service, function) Provide new Services, with new func

橡2-TrafficEngineering(revise).PDF

MPLS-Japan_Esaki_2001.PDF

JANOG14-コンバージェンスを重視したMPLSの美味しい使い方

橡T PDF

IP IPv4-IPv6

IP時代のトランスポート:FLASHWAVE

NTT Communications PowerPoint Template(38pt)

OIF とは Optical Internetworking Forum 1998 年に設立 IP ネットワークとフォトニックネットワークの間の物理的および論理的インタフェイスの仕様策定を行い, マルチベンダ環境での相互運用可能な製品とサービスの開発および広報活動による市場開拓を行うことを目的として

トラフィックの急増と変動に対応するトランスポート系運用管理技術

VLAN VPN mapped MPLS ~実稼動するVPLSネットワーク~

Welcome! MPLS Japan で 初めて Multicast を特集します 2

ProgrammableFlow Controller

ルータ(IPv6)掲示用池田.PDF

Ethernet Internet 20

SCAT87_cs4.indd

T - Telecommunication and Internet Protocol Harmonization Over Networks (TIPHON); Service and Network Management Framework; Part 1: Overview and Intro

MVPN VPN VPN MVPN P2MP TE & BGP


ykashimu_mpls_japan_Nov1

ループ防止技術を使用して OSPFv3 を PE-CE プロトコルとして設定する

wide93.dvi


MPLS Copyright 2008 Juniper Networks, Inc. 1

IP IP MTU Maximum Transfer Unit MTU MTU [2] i

untitled

Microsoft PowerPoint - 送付用_PREDICT成果発表会_ pptx[読み取り専用]

EANTC 1 CSP 2 SDN WAN Automation Engine Cisco WAN Automation Engine Cisco WAN Automation Engine Cisco WAN Automation Engine Cisco WAN Automation Engin

Microsoft PowerPoint - MPLS_JAPAN2008.ppt

FlexRay

Microsoft PowerPoint _2011MPLSJapan_SBTM八木_ver2.pptx

PowerPoint Presentation

PowerPoint プレゼンテーション

untitled

1. ATM ATM OC-3(155Mbps), OC-12(622Mbps), OC-48(2.4Gbps) : (by NTT) QoS(Quality of Service)

untitled

2

JANOG 2 Engineer ISP ISP ISP July 3, 1998

初めてのBFD

橡C14.PDF

news55.dvi

Flow Control Information Network 1 /

fusion.PDF

total-all-nt.dvi

(1) CCITT X.25 (HDLC/LAPB) SDLC (Synchronous Data Link Control protocol) HDLC High-speed Data Link Control protocol ITU-T/ISO ADCCP Advanced Data Comm

Cisco 1711/1712セキュリティ アクセス ルータの概要

Microsoft PowerPoint MPLS japan 2010, OTNのアプリケーション[NEC 松田].ppt

MPLS-VPN とは C 社を中心として RFC2547(Informational) に記された ISP サービスとしての IP-VPN 実現技術 網内パケット転送に MPLS(LDP/TDP) VPN 経路情報交換に BGP(mpBGP:RFC2283) を使用 ルーティングプロトコルがエッジ

The Internet ebgp peering BFD deployment (?) CE (Upstream) stability RIPE-229 fast-external-fallover keepalive/holddown 5sec/15sec BFD

2017 5G 時代の モバイルユーザープレーン 再検討 松嶋聡 ソフトバンク

部内資料

Inter-IX IX/-IX 10/21/2003 JAPAN2003 2

LSM-L3-24設定ガイド(初版)

光産業の将来ビジョン―ボーダレス化の中での進化と展開―(1BIZYON)

Microsoft PowerPoint MPLS Japan (Suemura).ppt

XMLを基盤とするビジネスプロトコルの動向

MPLS Japan 2015 キャリアサービスへの EVPN 適 用の検討と課題 横 山博基 NTT コミュニケーションズ株式会社 ネットワークサービス部 Copyright NTT Communications Corporation. All right reserved.

ユーザーズマニュアル

Macintosh HD:Users:ks91:Documents:lect:nm2002s:nm2002s03.dvi

untitled

Agenda トランスポート網におけるMPLS-TPの役割 MPLS-TP の適用シナリオとインタワーキング まとめ Page 2 NEC Corporation 2010

janog40-sr-mpls-miyasaka-00

untitled

Introduction Purpose This training course demonstrates the use of the High-performance Embedded Workshop (HEW), a key tool for developing software for

C08.PDF

PowerPoint プレゼンテーション

WG /04/

untitled

untitled

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

2

2

2002 Compaq Information Technologies Group, L.P Compaq Compaq SANworks StorageWorks Compaq Information Technologies Group, L.P. Microsoft Window

JANOG9 パネルセッション IP バックボーンにおける QOS の適用 Session , Cisco Systems, Inc. All rights reserved. 25 th Jan Miya Kohno 1

Broadband Internet I / 1 1 I / 1 2

LSM-L3-24設定ガイド(初版)


WMN Wi-Fi MBCR i

tutorial.dvi

アドレス プールの設定

技術的条件集別表 26.3 IP 通信網 ISP 接続用ルータ接続インタフェース仕様 (IPv6 トンネル方式 )

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

Run-Based Trieから構成される 決定木の枝刈り法

VoIP Broadcasting System 2/2 IP Convergence Communication Solution IP paradigm Integration & Management VoIP IP VoIP VoIP IT < >

SA46T:IPv4 IPv6 IPv4 APNIC RIR IPv4 IPv4 IPv4 IPv6 only IPv4 SA46T SA46T 2 (1) IPv4 IPv6 (2) IPv6 IPv4 4.3 IPv4 IPv6 LAN SA46T SA46T SA46T IPv6 IPv4 I

外部ルート向け Cisco IOS と NXOS 間の OSPF ルーティング ループ/最適でないルーティングの設定例

膨張する幹線トラフィックに対応する超高速トランスポート

2011 NTT Information Sharing Platform Laboratories

untitled

<95DB8C9288E397C389C88A E696E6462>


スライド 1

スライド 1

Transcription:

GMPLS 2004.3.3 NTT Naoaki Yamanaka 1 Outline Introduction HIKARI network Universal Control Scalable Service Universal Cost-effective Backbone HIKARI-router GMPLS Photonic Internet Lab. (PIL) GMPLS Conclusion 2

1998 1999 2000 2001 2002 2003 Traffic Demand 40.0 30.0 20.0 10.0 0.0 (Gb/s) ADSL ISDN ADSL 8M B ( ) ADSL 12M 1000 500 ( ) 0 3 Future HIKARI (Photonic) Network 2002 2003 2004... year Scalable service Bitrate restriction OVPN free network Active mirroring service Virtual NW λ-network Universal Network Adaptive 3R Wavelength conversion waveband SW Universal control GMPLS Ultra-scalable network GSMP HIKARI backbone service [A] Universal control [B] Scalable service VPN GMPLS CDN Distributed IX/IDC GbE 10GbE ATM Adaptive transparent SONET/SDH cut-through Analogue TV [C] Universal network (Low cost) 4

[A] Universal control IP Integrated node ATM SDM GMPLS-based universal control WDM 5 [B] Scalable service (1) Scalability for interface ATM STM Ether Analog Any interface Transparent User A -NW VPN ID#2 UNI VPN ID#1 (ex) OVPN service with L1 scalability User B -NW UNI VPN ID#1 User A -NW VPN ID#2 User B -NW STM GbE UNI Control plane User A Transport plane -NW Provider NW VPN ID#1 VPN A SDH GbE 6

[B] Scalable service (2) ATM NTT s ATM/SDH ATM 1 month NTT s GbE NTT VPN 1hr Universal 1hr Network 7 Transparent 1 2 Bit-rate restriction free 8

[B] Scalable service --- OVPN, first implementation Quasi-transparent network for multi-interface Universal frame for capsulling multi-protocol Control plane UNI-C CE Transport plane OUNI Optical L1 UNI-N Optical SW Universal frame STM Ether ATM L1 converter PE OXC Universal frame ATM Quasi- Transparent network UNI UNI ( ) 2R/3R 9 CE CE [C] Universal network Low cost Multi-layer traffic engineering -> High-efficient resource utilization Adaptive transparent with minimum number of wavelength conversion ->Transparent cut-through 10

Multi-layer backbone network design Traffic matrix Decrease traffic Increase traffic OLSP 11 Trade-off between Node Cost and Link Cost IP Router Fiber Link IP Router IP Router Wavelength router OLSP (a) Link Cost > Node Cost Transit IP router IP Router (b) Node Cost > Link Cost 12

Optical path topology design Average node degree D 12 α/β= 10 10 8 6 4 2 0 0 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 Traffic demand between S-D pairs, T [Mbit/s] Traffic demand between S-D pairs, T [Mbit/s] (1) Optical photonic lagical topology (2) Cost reduction effect Normalized network cost 1 0.8 0.6 0.4 0.2 Fixed topology α/β= 10 Changing topology Network cost reduction 13 Optical transparent path L3 Forwarding LT/OE/WC λ1 λ1 LT LT (a) L3 forwarding Ingress edge (b) λ-relay (c) Optical transparent path Egress edge Transmission segment 14

Adaptive Routing Wavelength Assign (1) ARWA: Adaptive routing wavelength assign. Phase #1 0.9 GMPLS link state 0.2 0.8 0.2 Signaling 0.9 RSVP-TE extension Route A-B-C NUW NW OPSF extension Advertisement A B C RSVP RSVP-TE extension Type length 1100101100111000 1: Unused wavelength 0: Used wavelength Routing phase = Advertisement of wavelength resources Type RSVP wc length 10000011000000 OSPF extension Type length NW NUW NW: Number of wavelengths NUW: Number of unused wavelengths WC: Wavelength Converter WC If no unused wavelengths match then use wavelength conversion RSVP Unused wavelengths for both link A and B 15 Adaptive Routing Wavelength Assign (2) Phase #2 GMPLS link state 0.2 0.2 Link state calculation NUW NW Type OSPF extension length 0.9 0.8 Signaling RSVP-TE extension Route A-B-C 0.9 OPSF extension OPSF extension Advertisement A B C RSVP RSVP-TE extension Type length 1100101100111000 1: Unused wavelength 0: Used wavelength Type RSVP wc length 10000011000000 WC NW NUW NW: Number of wavelengths NUW: Number of unused wavelengths WC: Wavelength Converter If no unused wavelengths match then use wavelength conversion RSVP Unused wavelengths for both link A and B 16

Adaptive Routing Wavelength Assign (3) Phase #3 Signaling phase = Select best wavelength relay -> least number of wavelength converter GMPLS link state NUW OSPF extension 0.2 0.2 NW Type length 0.9 0.9 OPSF extension NW NUW 0.8 Advertisement A B C Signaling WC NW: Number of wavelengths NUW: Number of unused wavelengths WC: Wavelength Converter RSVP If no unused wavelengths match RSVP-TE extension RSVP then use wavelength conversion Route A-B-C RSVP-TE extension wc RSVP Type length Type length 1100101100111000 10000011000000 1: Unused wavelength 0: Used wavelength Unused wavelengths for both link A and B 17 Adaptive transparent path Best path WCC ij red plane blue plane green plane Link cost Wavelength conversion Network cost reduction % (Photonic GMPLS/Electrical MPLS) 120 100 80 60 40 20 0 0% Electrical MPLS network Cut-through 70 80 % cost reduction Adaptive wavelength conversion 20% 40% 60% 80% 100% Through traffic using OLSP 18

Basic node architecture Tunable Laser L3 Forwarding Photonic node O/E Header control O/E Header control Optical switch 19 Outline Introduction HIKARI network Universal Control Scalable Service Universal Cost-effective Backbone HIKARI-router GMPLS Photonic Internet Lab. (PIL) GMPLS Conclusion 20

HIKARI router (1) Type-A Type-B Type-C WDM DMUX Optical Path Optical SW Monitor L1-Trunk λ-conv. 3R IP/MPLS router#1 FE FE S w Router#2 L2-SW #1 Monitor Multicast Photonic GMPLS router manager Hardware structure L2/L3-Trunk Photonic link state Type-C (Layer 3 Packet forwarding) Type-B (Optical 3R or wavelength conversion path) Type-A (Optical transparent path, Bit-rate restriction free) IP link state Multi-layer topology design algorithm GMPLS controller Hardware manager IP traffic monitor with low-pass filter OSPF extension RSVP-TE extension Software structure LRU=WDM+Optical SW +L1-Trunk LRU : Lambda Routing Unit FE : Forwarding Engine SW : Switch l-conv : Lambda converter NE : Network Element 21 IP/MPLS 22

Outline Introduction HIKARI network Universal Control Scalable Service Universal Cost-effective Backbone HIKARI-router GMPLS Photonic Internet Lab. (PIL) GMPLS Conclusion 23 24

IETF Running code IETF Runnig Code A A Code B B Code RFC, IA 25 GMPLS IETF GMPLSPIL OEO SONET IP IETF Lambda Switch (AON) IP-SONET- IP SONET Lambda OEO Lambda switch AON OOO (AON) 26

PIL PIL PIL Give & Take 27 IETF (Leading-edge code) IETF + Leading-edge code A A (Leadingedge) Code A A B B Code A B B C C IETF Code IETF C C OIF RFC, IA OIF ITU-T ITU-T 28

PIL 2002 9 NTT NEC 6 2003 3 7 Give & Take WG H14 H14 3 NTT PIL WG WG Leading Edge PIL NEC NTT 39 29 WG WG ITU-T IETF OIF IETF PIL 10 1 WG Leading Edge GMPLS RSVP-TE PIL 2002 2 19 30

[1] draft-shiomoto-ccamp-multiarea-te-01.txt [11] draft-vigoureux-shiomoto-ccamp-gmpls-mrn-00.txt -GMPLS - Generalized (Multi-area multi-layer traffic engineering MPLS Architecture for Multi-Region Networks using hierarchical LSPs in GMPLS networks) [12] draft-matsuura-reverse-lsp-01.txt [2] draft-imajuku-ml-routing-02.txt -GMPLS (Signaling reverse-directional - LSR LSP in generalized MPLS) Multilayer routing using multilayer switch capable LSRs [13] draft-ietf-gsmp-reqs-04.txt [3] draft-matsuura-mpls-reverse-lsp-00.txt -GMPLS (Signaling reverse-directional LSP - GSMP (Requirements for adding optical support to GSMPv3) in generalized MPLS) [14] draft-czezowski-optical-recovery-reqs-01.txt [4] draft-vigoureux-ccamp-gmpls-architecture-hpn-00.txt - GMPLS (Generalized - Optical Network Failure Recovery Requirements MPLS architecture for multi-region networks) [15] draft-rabbat-fault-notification-protocol-02.txt [5] draft-oki-ipo-optlink-req-00.txt - Fault Notification Protocol for GMPLS-Based Recovery - [16] draft-soumiya-lmp-fault-notification-ext-00.txt (Requirements of optical link-state information for traffic engineering) - Extensions to LMP for Flooding-based Fault Notification [6] draft-oki-ccamp-upstream-labelset-00.txt [17] draft-shimano-imajuku-gmpls-restoration-00.txt - RSVP-TE (Upstream label - extensions for gmpls restoration signaling set support in RSVT-TE extensions) [18] draft-matsuura-reverse-lsp-02.txt [7] draft-matsuura-gmpls-rsvp-requirements-01.txt -GMPLS RESV-TE Requirements for -GMPLS (Signaling reverse-directional LSP in generalized MPLS) using RSVP-TE in GMPLS signaling [19] draft-ietf-ccamp-gmpls-recovery-terminology-01 [8] draft-suemura-gmpls-restoration-signaling-00.txt - Recovery (Protection and Restoration) Terminology for - RSVP-TE GMPLS (Extensions to RSVP-TE for Supporting Multiple Protection and Restoration Types) [20] draft-papadimitriou-ccamp-gmpls-recovery-analysis -03 - Analysis of Generalized MPLS-based Recovery Mechanisms [9] draft-czezowski-optical-recovery-reqs-00.txt (including Protection and Restoration) - Optical Network Failure Recovery Requirements [10] draft-seno-path-quality-verification-00.txt - Path Quality Verification over an All- Optical Network [21] draft-bala-gmpls-recovery-functional-01 - Generalized MPLS Recovery Functional Specification 31 EtherReal NEC NTT NT T LSC PSC TDM LSC FSC NEC NEC 32

2003 5 21 2003 5 21 2003 5 21 33 PIL 2.5 400 PIL http://www.pilab.org/ PIL 34

MPLS2003 PIL MPLS / GMPLS demo Oct. 27-29, 2003 @ Washington DC LSC PSC MPLS PSC MPLS LSC TDM TDM 波長のパス Node 0 Node パケットのパス 1 パケットのパス MPLS GMPLS Node 2 波長のパス Node 4 Node 3 TDMのパス Node 7 Node 5 Node 6 TDMのパス Node 8 GMPLS domain MPLS domain 35 報道発表 次世代フォトニックネットワークを実現するGMPLSと高度な IPサービスを提供する MPLSの相互接続に世界で初めて成功 日本電信電話株式会社 日本電気株式会社 古河電気工業株式会社 三菱電機株式会社 このたび 日本電信電話株式会社 以下 NTT 本社 東京都千代田区 代表取締 役社長 和田紀夫 NEC 本社 東京都港区 社長 金杉明信 古河電気工業株式 会社 以下 古河電工 本社 東京都千代田区 社長 石原廣司 三菱電機株式会社 以下 三菱電機 本社 東京都千代田区 執行役社長 野間口有 の4社は 高度な IPサービス提供用ネットワーク技術として展開が進められているMPLS MultiProtocol Label Switching 技術と 次世代の経済的で高速大容量なフォトニックネットワークを 構築するための技術として注目されているGMPLS Generalized MultiProtocol Label Switching 技術をシームレスに連携させることに世界で初めて成功しました 本技術により MPLSを用いた高度なIP網が導入された既存のネットワークに その構 成を変更することなく 次世代の高速大容量かつ柔軟なネットワークのスムーズな導 入が可能となります また 既存のIPサービスに加えて 新たな高速大容量のネット ワークサービスの提供が可能となります 36 18

2003.10.27 37 BUSINESS WIRE, October 27, 2003 (10/27/2003) MPLS 2003 International Conference and Exhibits Opens in Washington, DC BUSINESS WIRE October 27, 2003; McLean, Virginia Isocore today announced the opening of the MPLS 2003 International Conference which will provide a forum for leading MPLS vendors, test equipment manufacturers, and premier ISPs to showcase next generation MPLS products and services. ( ) Also participating at the exhibits is NTT Network Systems Laboratories demonstrating world's first Multicast MPLS protocol jointly developed with Motorola. The demo will shows various data distributing scenarios over traffic engineered multipoint LSPs. Additionally, NTT, NEC Corporation, Furukawa Electric Co., Ltd., and Mitsubishi Electric Corporation will highlight PIL's activities. 38

BUSINESS WIRE, October 29, 2003 (10/29/2003) 10/29/2003 Sycamore Demonstrates Multi-vendor IP/Optical Interoperability Featuring MPLS Services over an Intelligent Optical Core Sycamore's SN 16000 Intelligent Optical Switch successfully demonstrates standards-based GMPLS signaling and routing Chelmsford, Mass. - Sycamore Networks, Inc. (NASDAQ: SCMR), a leader in intelligent optical networking, today announced that the company successfully demonstrated Generalized Multi-Protocol Label Switching (GMPLS) multi-vendor interoperability in Isocore's IP/Optical Integration demonstration -- held in conjunction with the MPLS 2003 International Conference - - at the Isocore Internetworking Lab in McLean, Va. on Wednesday, October 29. "By unifying network operations between the IP and optical layers, GMPLS provides the means for service providers to reduce operations costs and improve network efficiencies," said Naoaki Yamanaka, Ph. D., of NTT Network Innovation Laboratories. "Validating the inter-working of IP/MPLS and GMPLS is an important step in the evolution toward more flexible next-generation optical networks." 39 PIL Network NW Global NTT H14 CRL PIL NTT NW 7 2 ISOCORE NTT PIL PIL 40

IP+Optical GMPLS visibility Running Cord PIL 41