2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

Similar documents
18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

II 2 II

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

i

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b


. p.1/14

notekiso1_09.dvi

Quz Quz


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d


1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)


重力方向に基づくコントローラの向き決定方法

Gmech08.dvi

meiji_resume_1.PDF

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

sin.eps


p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Gmech08.dvi

Note.tex 2008/09/19( )

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

all.dvi

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

液晶の物理1:連続体理論(弾性,粘性)

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

ii

i

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

The Physics of Atmospheres CAPTER :

untitled


66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

PowerPoint プレゼンテーション



7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

-2-

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

TOP URL 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

sec13.dvi

KENZOU

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Chap11.dvi

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

77

2007年08月号 022416/0812 会告

ε

時系列解析

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

( ) ,

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


7-12.dvi

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

all.dvi

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

A 99% MS-Free Presentation

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

untitled

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Untitled

Transcription:

2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30

i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30

2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E 1 1 2 r 1 r 2 ( ) (3) = 1 + 2 + (4) E(r) d = E(r) d + E(r) d 1 2 I(2012), ec. 2. 5 p. 3/30

E(r) d = q 1 (5) d 1 4πε 0 r1 2 1 E(r) d = q 1 (6) d 2 4πε 0 r2 2 2 1 d 2 d = r2 1 (7) r2 2 (8) 1 E(r) d = 2 E(r) d (9) E(r) d = 0 I(2012), ec. 2. 5 p. 4/30

1 2 q r 1 r 2 1 n θ E 2 i 1/cosθ i E E E n = E n = Ecosθ (10) E 1 = E 2 (9) I(2012), ec. 2. 5 p. 5/30

q q (11) E(r) d = 0, q I(2012), ec. 2. 5 p. 6/30

q 1 2 q E 1 1 2 E 2 q n e n i q n I(2012), ec. 2. 5 p. 7/30

(q ) (12) E d = 0, + ( n i ) n e (13) E d = E d. ( ) r E d = 1 q 4πε 0 r 2 4πr2 = q (14) (= N ). ε 0 ( r ) I(2012), ec. 2. 5 p. 8/30

(13) E d = q (15), q. ε 0 { 0, q (16) E d = q/ε 0, q ( ) I(2012), ec. 2. 5 p. 9/30

(17) E = i E i (18) E d = i Q int. i E i d = q i i = Q int., ε 0 ε 0 q i =. I(2012), ec. 2. 5 p. 10/30

( ) E d = Q int. (19), Q int. ρ(r) dv ε 0 V (20) E(r) d = Q int. ε 0 V Q int. 1/r 2 I(2012), ec. 2. 5 p. 11/30

1: O a r Q r a ( ) ρ (21) Q = 4π 3 a3 ρ. O r(> a) (22) E(r) d = Q ε 0 O a I(2012), ec. 2. 5 p. 12/30

E(r) E(r) (23) E(r) d = E(r) d = 4πr 2 E(r) (24) E(r) = Q 4πε 0 1 r 2, r > a. ( Q ) r < a E(r) d = 1 4 (25) ε 0 3 πr3 ρ. I(2012), ec. 2. 5 p. 13/30

(26) (27) (28) E(r) = E r E(r) d = 4πr 2 E(r). E(r) = ρ 3ε 0 r = 1 4πε 0 Q a 3r. Q r 4πε 0 a 3, r < a Q 1 4πε 0 r 2, r > a r I(2012), ec. 2. 5 p. 14/30

a E(r) =, r < a ( Q ), r > a Q a I(2012), ec. 2. 5 p. 15/30

2: (cf. 2. 3. 3 2) λ R L E(r) R R E(r) d = λl (29), ε 0 = E(R) (30) E(R) = λ 2πε 0 1 R. d = 2πRLE(R). ( 2. 3. 3 2 ) L E(R) I(2012), ec. 2. 5 p. 16/30

3: ( σ) E ( A) A E E(r) d = Aσ (31). ε 0 E E A( )+E A( ) = Aσ (32). ε 0 I(2012), ec. 2. 5 p. 17/30

(33) E = σ 2ε 0. I(2012), ec. 2. 5 p. 18/30

P 0 -q (test charge ) P 0 P 0 P 0 -q -q P 0 ( ) E (34) E d < 0. P 0 E P 0 I(2012), ec. 2. 5 p. 19/30

E = φ P 0 E = φ = 0 φ φ(p) = P P 0 E dr P E 0 E P 0 φ E dr < 0 φ(p) > 0. (φ(p 0 ) = 0 ) dr P φ P 0 E I(2012), ec. 2. 5 p. 20/30

2.5.3 ( ) A(r) (35) A(r)(= diva) = A x x + A y y + A z z ( ) A (divergence) ( x 0, y 0, z 0 + z) V 0 n ( x 0, y 0, z 0 ) 0 A (, + y, x 0 z 0 + z y 0 z 0 ) ( x 0 + x, n y 0, z 0 ) z 0 I(2012), ec. 2. 5 p. 21/30

z z0 ( ) z0 + z( ) z0 ( ) (36) A z (x,y,z 0 )dxdy. z0 z0 + z (37) A z (x,y,z 0 + z)dxdy. z0 + z ( V 0 ) (38) {A z (x,y,z 0 + z) A z (x,y,z 0 )}dxdy Az (x,y,z 0 ) z zdxdy A z(x 0,y 0,z 0 ) z z x y = A z z V 0. I(2012), ec. 2. 5 p. 22/30

x y ( Ax A(r) d 0 x + A y y + A ) z (39) V 0 z = ( A) r=(x 0,y 0,z 0 ) V 0. A ( ) : 2 V 1,V 2 V 1(2) 1(2) (40) A d = A V 1, 1 n 2 (41) A d = A V 2. 2 V1 V2 n 1 I(2012), ec. 2. 5 p. 23/30

V 1 V 2 V 1+2 1+2 V 1 V 2 (n ) (42) A d + A d = A d. 1 2 1+2 1+2 A d = A V 1 + A V 2. ( ) V V ( V i i ) = A d (43) A V i = A dv ( ) i V I(2012), ec. 2. 5 p. 24/30

A(r) V ( V ) (44) A(r) d = V A(r) dv I(2012), ec. 2. 5 p. 25/30

E(r) d = Q int. = 1 (45) ρ(r)dv. ε 0 ε 0 ( 2. 5. 2 ) (46) E(r) d = E(r)dV. V V (45) E(r)dV = 1 (47) ε 0 V V ρ(r)dv. I(2012), ec. 2. 5 p. 26/30

V (48) E(r) = ρ(r) ε 0. r E x (E y,e z = const.) (49) E x (x+ x,y,z) E x (x,y,z) E x x x = E(x,y,z) x = ρ(x,y,z) ε 0 x. (50) E x (x+ x,y,z) E x (x,y,z)+ ρ(x,y,z) ε 0 x. I(2012), ec. 2. 5 p. 27/30

1: 2. 5. 2 1 (51) (52) E(r) = ρ(r) = { ρ, r < a 0, r > a ρ 3ε 0 r, r < a Q 4πε 0 r r 3, r > a, Q = 4πa3 ρ/3 r < a (53) E = ρ 3ε 0 r = ρ 3ε 0 ( x x + y y + z ) z = ρ ε 0 I(2012), ec. 2. 5 p. 28/30

r > a (54) E = Q 4πε 0 r r 3 = Q 4πε 0 ( ) 3 r 3(x2 +y 2 +z 2 ) 3 r 5 = 0 x ( x r 3 ) = I(2012), ec. 2. 5 p. 29/30

: (55) (56) E(r) = ρ(r) ε 0. E(r) = 0. (55) ρ,e ( 5 ) E(r,t) = ρ(r,t) ε 0 I(2012), ec. 2. 5 p. 30/30