Size: px
Start display at page:

Download ""

Transcription

1 1 B () Ver / / ( ) 2. 3.

2

3 g cgs n ( ) ( ) : : ( ) : : 1 ( ) : : : (?): 2 ( )

4 : 2 ( ) : gradient ( ) (div ) ( ) (rot ) ( ) ( ) ( ) : ( )

5 ( ) : ( ) : : : : ( ) : ( B i ) ( ) (?) A ( A B ) ( A B i ) ( i A ) : - ( i A B ) : : : : : :

6 grad div rot

7 e C e = [C] (1.1) 1g N A = (1.2) e N A = [C] (1.3) R 12 2 q 1 q 2 F 12 F 12 F 12 = k q 1q 2 R 2 12 (1.4) 1[N] = 1[kg m s 2 ] (1.5) MK MK [m] [kg] [sec] [A] (1.6) 1A 1 1[C] 1[A] 1[sec] (1.7) MKA k k k k = 1 4πε 0 ε 0 (permittivity of vacuum) ε 0 = [C 2 N 1 m 2 ] (1.9) 4π 4πR 2 1m 2 F 12 1 e 2 F 12 = 4πε 0 R12 2 = 1 ( C ) 2 4πε 0 (1m) 2 = [N] (1.10) (1.8)

8 g (FY2013/1 : 2013/10/03 ) 1g g 1g 1g q = = [C] (1.11) 2 R = 1m F = 1 4πε 0 q 2 R 2 = [N] (1.12) 1[kg] 9.8[N] [kg] [km] 1[g] cgs MKA cgs-gauss [cm] [g] [sec] (esu) e e = [esu] (1.13) Gauss B MKA cgs-gauss 1m = 100cm 2 F 12 ( F 12 = e [esu] ) 2 R12 2 = (100[cm]) 2 = [dyn] = [N] (1.14) A B A = (A x, A y, A z ), B = (Bx, B y, B z ) (1.15) A A = (A 2 x + A 2 y + A 2 z) 1/2 (1.16) A B A + B = (A x + B x, A y + B y, A z + B z ) (1.17) A + B 2 A B = (A x B x, A y B y, A z B z ) (1.18) B A

9 (x, y, z) r r = (x, y, z) (1.19) 2 P 1 P 2 r 1 r 2 P 2 P 1 R 12 R 12 = r 1 r 2 (1.20) R 12 2 ( )R 12 R 12 = [ (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2] 1/2 (1.21) n 12 n 12 = R 12 R 12 n 12 1 (1.22) P 1 P 2 () q 1 q 2 q 1 q 2 q 1 q 2 F 12 F 12 = 1 4πε 0 q 1 q 2 r 1 r 2 2 n 12 (1.23) F 12 = q 1q 2 4πε 0 n 12 r 1 r 2 2 n 12 = R 12 R 12 = r 1 r 2 r 1 r 2 (1.24) (1.25) F 12 = q 1q 2 4πε 0 r 1 r 2 r 1 r 2 3 ( F 12 = q 1q 2 x 1 x 2 4πε 0 [(x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2 ], y 1 y 2, (1.27) 3/2 [(x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2 3/2 ] z 1 z 2 [(x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2 ] 3/2 ) (1.26) (1.28) n n q 1, q 2,..., q n r 1, r 2,..., r n q, r F 1, F 2,..., Fn F n F = F i = 1 n qq i ( r r i ) 4πε 0 r r i 3 i=1 i=1 (1.29)

10 Coulomb i = 1 n n i F i n n q i q j r ij F i = F ij = 4πε 0 r ij 3 j i j i r ij = r i r j (1.30) 1.4 ( ) A B θ ( ) A = A, B = B, A B AB cos θ (1.31) (1.32) θ A B cos θ A B A B = B A A ( B + C) = A B + A B (1.33) (1.34) 0 A A = A 2 = A 2 (1.35) OP 1 P 2 O θ P 2 P 1 2 = OP1 2 + OP2 2 2OP1 OP 2 cos θ (1.36) OP 1 = r 1, OP 2 = r 2, P 2 P 1 = R 12 R 2 12 = R 12 2 = ( r 1 r 2 ) ( r 1 r 2 ) (1.37) = r 1 r 1 + r 2 r 2 2 r 1 r 2 (1.38) = r r r 1 r 2 = r r 2 2 2r 1 r 2 cos θ (1.39) A = (A x, A y, A z ), B = (B x, B y, B z ) x,y,z i, j, k A = (A x, A y, A z ) = A x i + A y j + A z k (1.40) B = (B x, B y, B z ) = B x i + B y j + B z k (1.41)

11 1.5. ( ) 11 A B = (A x i + A y j + A z k) (B x i + B y j + B z k) (1.42) = A x B x i i + A y B y j j + A z B z k k (1.43) +(A x B y + A y B x ) i j + (A y B z + A z B y ) j k + (A z B x + A x B z ) k i (1.44) = A x B x + A y B y + A z B z (1.45) F s θ W W = F s cos θ (1.46) F s W = F s (1.47) 1.5 ( ) A B θ ( ) C C = A B C = A B = AB sin θ (1.48) (1.49) C A B C A B A B A B C x,y,z x,y,z A, B, C A B = B A (1.50) A ( B + C) = A B + A C (1.51) θ = 0 A A = 0 (1.52) i, j, k i i = j j = k k = 0 i j = k, j k = i, k i = j (1.53)

12 A = (A x, A y, A z ) = A x i + A y j + A z k (1.54) B = (B x, B y, B z ) = B x i + B y j + B z k (1.55) A B = (A x i + A y j + A z k) (B x i + B y j + B z k) (1.56) = A x B x i i + A y B y j j + A z B z k k (1.57) +A x B y ( i j) + A y B x ( j i) + A y B z ( j k) (1.58) +A z B y ( k j) + A z B x ( k i) + A x B z ( i k) (1.59) = (A y B z A z B y ) i + (A z B x A x B z ) j + (A x B y A y B x ) k (1.60) ( A B) x = A y B z A z B y ( A B) y = A z B x A x B z ( A B) z = A x B y A y B x (1.61) (1.62) (1.63) (FY2009/1 : 2009/10/1 ) : R F θ N N = R F N = R F sin θ (1.64) (1.65) N R F N R F 1.1: : ( A B) C = ( B C) A = ( C A) B (1.66) 3

13 ( ) q q 1 F = qq 1 4πε 0 r r 1 r r 1 3 (2.1) E( r) E( r) = q 1 4πε 0 r r 1 r r 1 3 (2.2) F = q E( r) (2.3) E( r) r = (x, y, z) E( r) E x (x, y, z) = E y (x, y, z) = E z (x, y, z) = q 1 x x 1 4πε 0 [(x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 ] 3/2 (2.4) q 1 y y 1 4πε 0 [(x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 ] 3/2 (2.5) q 1 z z 1 4πε 0 [(x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 ] 3/2 (2.6) E ( ) [N C 1 ] [C] = [A sec] [N] = [m kg sec 2 ] [m kg sec 3 A 1 ] [V] [V m 1 ] [N C 1 ] = [m kg sec 3 A 1 ] = [V m 1 ] (2.7) (FY2013/1 : 2013/10/03 ) n q i r r E( r) n i = 4πε 0 r r i 3 = E i ( r) (2.8) E i ( r) = i=1 q i 4πε 0 r r i r r i 3 i=1 E i ( r) r i i r ( E i ( r, r i ) ) (2.9)

14 r ρ( r )[C m 3 ] r V [m 3 ] ρ( r ) V r ρ( r ) V 4πε 0 r r r r 3 r i, V i E( r) = i ρ( r i ) V i 4πε 0 r r i r r i 3 (2.10) (2.11) V V dv E( r) = 1 r r 4πε 0 r r 3 ρ( r )dv (2.12) V 3 xyz V = x y z (2.13) dv = dx dy dz (2.14) x E x (x, y, z) = 1 (x x )ρ(x, y, z ) 4πε 0 [(x x ) 2 + (y y ) 2 + (z z ) 2 ] 3/2 dx dy dz (2.15) (x 0, y 0, z 0 ) (x 1, y 1, z 1 ) E x (x, y, z) = 1 4πε 0 z1 y1 x1 z 0 y 0 (x x )ρ(x, y, z ) x 0 [(x x ) 2 + (y y ) 2 + (z z ) 2 ] 3/2 dx dy dz (2.16) : (FY2013/2 : 2013/10/17 ) r ( ) λ s s r θ 0 s r λ s cos θ 4πε 0 (r 2 + s 2 ) = λ s 4πε 0 r (r 2 + s 2 ) 3/2 (2.17) s = E(r) = λ r 4πε 0 (r 2 + s 2 ) 3/2 ds (2.18)

15 s = r tan θ r 2 + s 2 = r 2 (1 + tan 2 θ) = r2 cos 2 θ = r2 sec 2 θ (2.19) 2s ds = r 2 ( 2) sin θ cos 3 θ dθ (2.20) s ds = r 2 sin θ cos 3 θ dθ = 1 s r2 cos 2 tan θ dθ = r θ cos 2 dθ (2.21) θ ds = r sec 2 θdθ (2.22) s = θ = π/2 π/2 E(r) = = π/2 π/2 λ 1 4πε 0 r λ 4πε 0 π/2 π/2 r r 3 sec 3 θ r sec2 θdθ (2.23) cos θdθ = λ 2πε 0 r (2.24) Δs A s 0 r θ E P 2.1: 2.3 (electric line of force) q r E(r) = q ε 0 1 4πr 2 (2.25) E(r) 4πr 2 = q ε 0 (2.26) q q ( ) 2.2( ) q N N q ε 0 (2.27) q N q/ε

16 : 1 ( ) ( ) 2.4 : 1 ( ) ( ) q ( ) N = q/ε 0 2.3( ) 2.3( ) N = q/ε 0 2.3( ) 0 ( ) = ()/ε 0 (2.28) 2.3:

17 2.4. : 1 ( ) N (= ) N ( ) 2.4( ) = cos θ (2.29) θ ( E ) n 2.4: N/ N/ E = N = N cos θ n (2.30) N = E = E cos θ = ( E n) = E n (2.31) ( E n E n ) N N = N = ( E n) (2.32) q q/ε 0 N N = N = ( E n) = q ε 0 (2.33) N = dn = E { n}d = q (2.34) ε 0 r N = dn = { E( r) n( r)}d = q (2.35) ε 0

18 18 2 f( r)d (2.36) f( r) () r 3 (x 0, y 0 ) (x 1, y 1 ) y1 x1 f( r)d = f(x, y)dxdy (2.37) y 0 x 0 1 q V N = dn = { E( r) n( r)}d = q = 1 q i = 1 ρ( r)dv (2.38) ε 0 ε 0 ε 0 i V r 2 r V { E( r) n( r)}d = 0 (2.39) (FY2013/2 : 2013/10/17 ) D(electric flux density) D( r) ε 0 E( r) (2.40) D( r) n( r)d = ρ( r)dv V (2.41) E D : λ[c m 1 ] r E(r) N = λl ε 0 l[m] λl N r l r (2.42) (r) = 2πr l (2.43)

19 r E(r) E = N = λl/ε 0 2πr l = λ 2πε 0 r (2.44) { E( r) n( r)}d = 1 ρ( r)dv ε 0 V (2.45) l r (r) { E( r) n( r)}d = E = E 2πrl 1 ρ( r)dv = λl ε 0 ε 0 V E 2πrl = λl E(r) = ε 0 λ 2πε 0 r (2.46) (2.47) (2.48) (2.49) : R Q 4π 4π r E( r) n( r)d = E(r) 4πr 2 = 1 ρ( r)dv (2.50) ε 0 r V r < R r E( r) n( r) = E(r) 4πr 2 = 1 ρ( r)dv = 0 (2.51) ε 0 V E(r) = 0 (r < R) (2.52) r > R r Q 1 ρ( r)dv = Q ε 0 ε 0 V E( r) n( r) = E(r) 4πr 2 = Q (2.54) ε 0 E(r) = (2.53) Q 4πϵ 0 r 2 (r > R) (2.55) Q

20 : R ρ r r ρ E(r) = 1 ε 0 ρ 4πr πr 2 = ρ 3ε 0 r (r < R) (2.56) R E(r) = 1 ε 0 ρ 4πR πr 2 = ρr3 3ε 0 r 2 (r > R) (2.57) 2.6 (?): 2 ( ) (a) Q q 1 q O P A B W = F cos θ s, W = qe cos θ s F = qe (2.58) (2.59) QO QP QA QB P A B q A B W s = s cos θ W = F s, F = qe (2.60) W = qe s = qe s cos θ = W (2.61) A B A B OP OP q O P W O P W O P 2.5(a) (b) RR R P O P OP r t( r) E( r) OP W W = q ( E t) s = q ( E( r) t( r))ds (2.62) OP OP q ( E( r) t( r))ds (2.63) OP OP OP

21 2.6. (?): 2 ( ) 21 q 1 E(r) = q 1 4πε 0 1 r 2 q 1 r Q O r 0 Q P P r E t r [ ( E( r) t( r))ds = ( E( r) q 1 1 t( r))ds = OP OP r 0 4πε 0 s 2 ds = q ] r0 1 1 = q ( 1 1 4πε 0 s 4πε 0 r 1 ) (2.65) r 0 W q W = qq ( 1 1 4πε 0 r 1 ) r 0 r (2.64) (2.66) s θ t E F 2.5: Q q 1 q O P (a) O P (b) Q O P : 2 ( ) 2.6 C OA P OAP O O C 0 ( E( r) t( r)) ds = 0 (2.67) C Faraday (FY2009/3 : 2009/10/29 )

22 22 2 O A A' C P 2.6: C O q P U( r) = q ( E( r ) t( r ))ds (2.68) OP q ( ) φ( r) = ( E( r ) t( r ))ds (2.69) OP (electostatic potential) V ev J (FY2013/3 : 2013/10/24 ) r E( r) = q 1 4πε 0 r 2 r = r φ(r) = ( E( r ) t( r ))ds = E(s)ds = OP r [ ] r q 1 q1 4πε 0 s 2 ds = = q 1 4πε 0 s 4πε 0 r : ds r r dr ds ds = dr (2.70) (2.71) r 1 q 1 O r φ( r) = q 1 4πε 0 r r 1 (2.72)

23 r 1, r 2,... r n, n φ( r) = n i=1 q i 4πε 0 r r i ρ( r ) φ( r) = 4πε 0 r r dv V (2.73) (2.74) q q : 2 +q q 2.2( ) (FY2010/3 : 2010/10/21 )

24 ( ) 2.8 s P P PP t E P P φ P φ P q ( qφ P qφ P = qe ) t s (2.75) φ P φ P = ( E ) t s (2.76) φ E t = φ s = dφ(s) ds (2.77) t t P P P x P x E x = E i = φ x φ(x, y, z) E x (x, y, z) = x E x (x, y, z) (x, y, z) x φ P P' (2.78) (2.79) φ P E t P Δs (FY2009/4 : 2009/11/5 ) 2.8: ( E(x, y, z) = E( r) φ = (E x, E y, E z ) = x, φ y, φ ) = φ( r) = grad φ( r) (2.80) z

25 Gradient nabla x ( ) φ x, y, z φ(x, y, z) x φ φ(x, y, z) φ(x + x, y, z) φ(x, y, z) = lim x x x 0 x 3 2 y z x φ (2.81) φ(x, y, z) = x 2 y 5 z 3 φ(x, y, z) x = 2xy 5 z 3, φ(x, y, z) y = 5x 2 y 4 z 3, φ(x, y, z) z (2.82) = 3x 2 y 5 z 2 (2.83) 1 f( r) f( r 0 + r) = f(x 0 + x, y 0 + y, z 0 + z) (2.84) [ ] [ ] [ ] f(x, y, z) f(x, y, z) f(x, y, z) f(x 0, y 0, z 0 ) + x + y + z (2.85) x r= r 0 y r= r 0 z r= r 0 r x, y, z 3 r(x, y, z) f r f(r) f(r) r r x, y, z 3 f(r) x, y, z f(x, y, z) f(r) x = df(r) r(x, y, z) dr x (2.86) r 2 x 2 + y 2 + z 2 r x = 1 ( x 2 + y 2 + z 2) 1/2 x 2x = 2 r (FY2013/4 : 2013/10/31 ) (2.87) (2.88) : nabla ( x, y, ) z ( φ x, φ y, φ ) = φ = grad φ z grad gradient φ (2.89) (2.90) (FY2011/3 : 2011/10/27 ) : gradient ( ) ( 2.9) ( ) ( ) = ( ) (2.91)

26 26 2 (x, y) h(x, y) x h/ x y h/ y ( h = x, h ) y h(x, y) (2.92) h(x, y) φ( r) E( r) 2 3 ( φ E = x, φ y, φ ) = φ z (2.93) h(x, y) h(x, y) (FY2013/5 : 2013/11/7 ) 2.9: : q 1 r = (x, y, z) E φ (x, y, z) r φ( r) = φ(r) = q 1 1 4πε 0 r (2.94) E = φ ( φ(x, y, z) (E x, E y, E z ) =, x r = r(x, y, z) = x 2 + y 2 + z 2 φ(x, y, z), y ) ( φ(x, y, z) r = z x dφ(r) dr, r y dφ(r) dr, r z ) dφ(r) dr (2.95) (2.96) (2.97) r x = x r, dφ(r) dr r y = y r, = q 1 4πε 0 1 r 2 r z = z r (2.98) (2.99) (2.100)

27 ( ) q1 x E = (E x, E y, E z ) = 4πε 0 r 3, q 1 y 4πε 0 r 3, q 1 z 4πε 0 r 3 (2.101) (FY2010/4 : 2010/10/28 ) q 1 q 2 r 12 q 1 q 2 r 12 q 2 U = q 1q 2 q 1 q 2 = 4πε 0 r 12 4πε 0 r 1 r 2 = q 1φ 2 ( r 1 ) = q 2 φ 1 ( r 2 ) (2.102) r 1 r 2 2 r 12 = r 1 r 2 q 2 q 1 3 q 1 q 2 q 3 q 1 q 2 U = U 12 + U 13 + U 23 = + q 1q 3 + q 2q 3 q 1 q 2 = 4πε 0 r 12 4πε 0 r 13 4πε 0 r 23 4πε 0 r 1 r 2 + q 1 q 3 4πε 0 r 1 r 3 + q 2 q 3 (2.103) 4πε 0 r 2 r 3 = q 1 φ 2 ( r 1 ) + q 1 φ 3 ( r 1 ) + q 2 φ 3 ( r 2 ) = q 2 φ 1 ( r 2 ) + q 3 φ 1 ( r 3 ) + q 3 φ 2 ( r 3 ) (2.104) n 2 2 U = 1 n q i q j 4πε 0 r i r j = 1 n q i q j 8πε 0 r i r j (i,j) i j (2.105) q i q i q i U = 1 n 1 q i 2 4πε 0 = 1 2 i=1 n i=1 n j( i) q i φ i, φ i = 1 4πε 0 q j r i r j n j( i) q j r i r j 1/2 (2.106) (2.107)

28 n U = 1 ρ( r)φ( r)dv, φ( r) = 1 ρ( r ) 2 4πε 0 r r dv (2.108) 2 U = 1 ρ( r)φ( r)dv = ρ( r) ρ( r ) 4πε 0 r r dv dv = 1 2 ρ( r)ρ( r ) 4πε 0 r r dv dv (2.109) 2.9 z d 2 +q q (0, 0, +d/2) (0, 0, d/2) (x, y, z) { } φ(x, y, z) = q 1 4πε 0 [x 2 + y 2 + (z d/2) 2 ] 1 1/2 [x 2 + y 2 + (z + d/2) 2 ] 1/2 [ x 2 + y 2 + φ = qd 4πε 0 (2.110) (x, y, z) d ( z ± d ) ] 2 1/2 ( x 2 + y 2 + z 2 ± zd ) 1/2 ( x 2 + y 2 + z 2) ( 1/ ) zd x 2 + y 2 + z 2 (2.111) z (x 2 + y 2 + z 2 ) = p z 3/2 4πε 0 r 3 (2.112) p = qd, r 2 x 2 + y 2 + z 2 (2.113) p = qd φ( r) = 1 p r 4πε r 3 (2.114) (FY2009/5 : 2009/11/12 ) (FY2011/4 : 2011/11/17 ) E( r) = φ (2.115) r 2 = x 2 + y 2 + z 2 r x = 1 ( x 2 + y 2 + z 2) 1/2 x 2x = 2 r r 2 = x 2 + y 2 + z 2 2r r x = 2x r x = x r (2.116) (2.117) (2.118) (2.119) (2.120)

29 E x = φ x = p 3zx 4πε 0 r 5 E y = φ y = p 3zy 4πε 0 r 5 E z = φ z = p 3z 2 r 2 4πε 0 r 5 p qd (2.121) (2.122) (2.123) (2.124) (x, y, z ± d/2) ±q r = (x, y, z) { } E( r) = q (x, y, z) (0, 0, d/2) (x, y, z) (0, 0, d/2) (2.125) 4πε 0 [x 2 + y 2 + (z d/2) 2 3/2 ] [x 2 + y 2 + (z + d/2) 2 ] 3/2 [ x 2 + y 2 + (z d/2) 2] 3/2 ( x 2 + y 2 + z 2 zd ) 3/2 = r 3 E x (x, y, z) = p 3zx 4πε 0 r 5 E y (x, y, z) = p 3zy 4πε 0 r 5 E z (x, y, z) = p 3z 2 r 2 4πε 0 r 5, p qd ( 1 zd ) 3/2 ( r 2 r 3 1 ± 3 ) zd 2 r 2 (2.126) (2.127) (2.128) (2.129) (2.130) q q 1 F = qq 1 4πε 0 r r 1 r r 1 3 (2.131) E( r) E( r) = q 1 4πε 0 r r 1 r r 1 3, F = q E( r) (2.132) q = 0, q 1 = 0 (2.133) q = 0, q 1 0 (2.134) F = 0 E( r) = 0 E( r) 0 r 0

30 () ()

31 ρ( r)dv = V D( r) n( r)d, or V ρ( r) dv = E( r) n( r)d (3.1) ε x,y,z x, y z ρ( r) dv = ρ( r) x y z = ρ( r) V (3.2) ε 0 ε 0 ε 0 V V = x y z (3.3) 6 E( r) n( r) x A A A n(x, y, z) = ( 1, 0, 0) (3.4) E n = E x n x + E y n y + E z n z = E x (x, y, z) (3.5) A E( r) n( r)d = E x (x, y, z) y z A A (3.6) n(x + x, y, z) = (1, 0, 0) (3.7) E n = E x n x + E y n y + E z n z = E x (x + x, y, z) (3.8) A E( r) n( r)d = Ex (x + x, y, z) y z (3.9) A A A+A E( r) n( r)d = {Ex (x + x, y, z) E x (x, y, z)} y z (3.10) = E x(x + x, y, z) E x (x, y, z) V (3.11) x y B B z C C E y (x, y + y, z) E y (x, y, z) E( r) n( r)d = V (3.12) B+B y E z (x, y, z + z) E y (x, y, z) E( r) n( r)d = V (3.13) C+C z

32 32 3 E( r) n( r)d = B+B C+C E( r) n( r)d = E( r) n( r)d = E( r) n( r)d (3.14) = E x(x + x, y, z) E x (x, y, z) V x (3.15) + E y(x, y + y, z) E y (x, y, z) V y (3.16) + E z(x, y, z + z) E y (x, y, z) V z (3.17) V ρ( r) dv = E( r) n( r)d ε 0 V ρ( r) = E x(x + x, y, z) E x (x, y, z) ε 0 x + E y(x, y + y, z) E y (x, y, z) y + E z(x, y, z + z) E y (x, y, z) z x 0, y 0, x 0 ρ( r) ε 0 = E x x + E y y + E z z ρ( r) = D( r), or (3.18) (3.19) (3.20) (3.21) (3.22) ρ( r) ε 0 = E( r) (3.23) div (Diversence ) ρ( r) = div D( r), or ρ( r) ε 0 = div E( r) (3.24) x,y,z x,y,z x y (div ) 2 E( r) = E x x + E y y (3.25) 3.2 y E x x = 0, E y y = 0 (3.26) E = E x x + E y y = 0 (3.27)

33 ( ) 33 z n = ( 1, 0, 0) A A (x, y, z) z O y n = (1, 0, 0) x y x 3.1: 3.2 E y y < 0 (3.28) E x x > 0 (3.29) E y E x E y y = E x x (3.30) E = E x x + E y y = 0 (3.31) 3.2 E x x > 0 E y y > 0 (3.32) E = E x x + E y y > 0 (3.33) (FY2009/6 : 2009/11/19 ) ( ) (2 ) ( E( r) t( r)) ds = 0 (3.34) C

34 34 3 y E y y + 0 x 0 x 0 x x 3.2: : : : 3.3 x PQRP P Q s t P Q t = (0, 1, 0) (3.35) y 0 E(x, y + s, z) tds = y 0 E y (x, y + s, z)ds (3.36) R s t R t = (0, 1, 0) (3.37) y 0 E(x, y + y s, z + z) tds = y 0 E y (x, y + y s, z + z)ds (3.38) y + y s = y + s y s = s ds = ds s : 0 y, s : y 0 y 0 E y (x, y + s, z + z)ds s s P Q R y E tds = E y (x, y + s, z) E y (x, y + s, z + z)ds (3.40) PQ+R 0 y 0 s z y [ = E y (x, y, z) + E ] [ y(x, y, z) s E y (x, y, z) + E y(x, y, z) y y = 0 E y(x, y, z) zds z s + E y(x, y, z) z z (3.39) ] ds (3.41) (FY2013/6 : 2013/11/28 ) s y P Q R E tds = E y(x, y, z) z y (3.43) z PQ+R Q R P E tds = E z(x, y, z) z y y QR+P (FY2010/5 : 2010/11/11 ) x (3.42) (3.44) y z = x ( ( E( r) t( r)) Ez (x, y, z) ds = E ) y(x, y, z) x (3.45) y z

35 ( ) 35 z (x, y, z + z) R(x, y + y, z + z) t O P(x, y, z) Q(x, y + y, z) y x 3.3: x,y,z ( E( r) t( r)) ds = y z ( E( r) t( r)) ds = x y z ( Ex (x, y, z) z ( Ey (x, y, z) x E ) z(x, y, z) y (3.46) x E x(x, y, z) y ) z (3.47) ( E( r) t( r)) ds = 0 (3.48) C x,y,z 0 ( Ez y E ) ( y Ex = 0, z z E ) ( z Ey = 0, x x E ) x = 0 (3.49) y 3 ( E = x, y, ) ( Ez (E x, E y, E z ) = z y E y z, E x z E z x, E y x E ) x = 0 (3.50) y rot E = curl E = 0 (3.51) (rot ) rot 3.4 y E x E y x E x y > 0 (3.52) = 0 (3.53) E y x E x y > 0 (3.54)

36 y x y E y x E x y > 0 (3.55) > 0 (3.56) 2 E y x E x = 0 (3.57) y 0 E y x E x y z ( rote Ez = y E y z, E x z E z x, E y x E ) x y (3.58) (3.59) y y x rot E x rot E = 0 3.4: : y : x y 3.3 ( ) b a df(x) dx dx = [f(x)]b a = f(b) f(a) (3.60) f(x) f(x) F tds OP (3.61)

37 3.3. ( ) ( ) ( ) ( ) D n d = ρdv ( ) ρ = D V (3.62) (3.63) ρ ( ) D n d = DdV V F V ( ) F n d = F dv V (3.64) (3.65) ( ) ( ( E( r) t( r)) Ez (x, y, z) ds = x y ( ( E( r) t( r)) Ex (x, y, z) ds = y z ( ( E( r) t( r)) Ey (x, y, z) ds = x z E ) y(x, y, z) x (3.66) z E z(x, y, z) x E x(x, y, z) y ) y (3.67) ) z (3.68) x,y,z ( {( E( r) t( r)) ds = E ) } n (3.69) n d C ( {( E( r) t( r)) ds = E ) } n d (3.70) C 0 0 F C { {( F ( r) t( r)} ds = F ) ( r) C (FY2011/5 : 2011/12/1 ) } n( r) d (3.71)

38 (3.109) (3.108) E = φ (3.72) E = ( φ) (3.73) x { E( r) } x = E z( r) y E y( r) z = y 2 φ( r) y z = 2 φ( r) z y { φ( r) } { φ( r) } = 2 φ( r) z z y y z + 2 φ( r) z y { E( r) } = 0 (3.76) x y z 0 (3.74) (3.75) E = φ E = 0 φ = 0 (3.77) φ φ : E ρ (3.104) φ E (3.109) ( ρ( r) = ε E( r) = ( φ( r)) = x, y, ) ( φ( r) z x, φ( r) y, φ( r) ) z = { φ( r) } + { φ( r) } + { φ( r) } x x y y z z { 2 } φ( r) = x φ( r) y φ( r) z 2 (Laplacian) 2 ( ) 2 2 x y z 2 = = (3.81) ρ( r) ε 0 = 2 φ( r) = φ( r) (3.82) (Poission s equation) (3.78) (3.79) (3.80) 2 φ( r) = 0 (3.83) (Laplace s equation)

39 R ρ ρ( r) = ρ ( r < R), (3.84) = 0 ( r > R) (3.85) r 2 = x 2 + y 2 + z 2 2r r x = 2x r x = x r φ x = r dφ(r) = x x dr r 2 φ x 2 = r2 x 2 dφ(r) r 3 dr dφ(r) dr + x2 d 2 φ(r) r 2 dr 2 y, z 2 φ(r) = 2 φ x φ y φ z 2 (3.86) (3.87) (3.88) (3.89) (3.90) (3.91) = 3r2 (x 2 + y 2 + z 2 ) dφ(r) r 3 + d2 φ(r) dr dr 2 = 2 dφ(r) + d2 φ(r) r dr dr 2 = 1 d 2 [rφ(r)] (3.92) r dr2 d 2 2 φ(r) = 1 r dr 2 [rφ(r)] = ρ ε (r < R) (3.93) = 0 (r > R) (3.94) 4 r φ(r) 0 (3.95) r = 0 φ(r) r = R φ(r) r = R dφ(r) dr (3.96) (3.97) (3.98) φ(r) = ρr2 2ε 0 ρ 6ε 0 r 2 (r < R) (3.99) = ρr3 3ε 0 r (r > R) (3.100) (pn TBW)

40 E( r) = 1 4πε 0 F = qe V r r r r 3 ρ( r )dv (3.101) (3.102) : ρdv = D nd V ρ = D D = ε 0E (3.103) (3.104) (3.105) ρ( r, t) = D( r, t) (3.106) C E tds = 0 (3.107) E = 0 (3.108) E = φ φ( r) = OP ( E( r ) t( r )) ds (3.109) (3.110) O φ O = 0 ρ( r ) φ( r) = 4πε 0 r r dv V (3.111) ρ( r) ε 0 = 2 φ( r) () (3.112) U( r) = qφ( r) (3.113) (FY2009/7 : 2009/11/26 )

41 ρ( r ) φ( r) = V 4πε 0 r r dv ρ ρ( r) ε 0 ポアソン = 2 φ( r) E( r) = 1 4πε 0 φ ガウス ρ ε 0 = E V r r E = φ r r 3 ρ( r )dv ( φ = E t) ds OP E 静電気力 F ( r) = qe( r) 位置エネルギー U = qφ 渦無し E tds = 0 C E = 0 ガウス ( D n ) d = V ρ ε 0 = E ρdv 3.5: ρ E φ 3

42

43 () = () (FY2010/6 : 2010/11/18 ) (FY2013/7 : 2013/12/05 ) (1) (2) 0 () ( ) (3) 0 (4) 0 ( ) (5) ( )

44 第4章 44 導体と静電場 図 4.1: 一様静電場中に導体球を置いた場合の電気力線 図 4.2: 一様電場中に導体球を置いた場合の静電誘導 (a) 外部から加わる電場 (b) 導体表面に誘起される電荷が作る電 場 (c) 両者の合計の電場とそれが作る等電位面 るガウスの法則は以下のように書くことができる { } r) n( r) d = 1 E( ρ( r)dv ε0 V 1 E = σ ε0 σ E = ε0 (4.1) (4.2) (4.3) ここで σ( r) は電荷の面密度であり単位は [C/m2 ] となる より一般には 導体表面の位置 r に対して 面の垂直な向き の単位ベクトルを n( r) とすると r) E( = 1 σ( r) n( r) ε0 図 4.3: 導体表面にガウスの法則を適用する場合に得られる電場と表面電荷の関係 (4.4)

45 (FY2011/6 : 2011/12/8 ) V C = Q V (4.5) F( ) 1 1[F] [pf] [nf] [µf] V : E( r) = 1 ε 0 σ( r) n( r) (4.6) E = σ ε 0 ( ) φ = E t ds (4.7) (4.8) d φ = d 0 Eds = Ed (4.9)

46 46 4 φ V Q = σ V = Ed = σd ε 0 C = Q V = ε 0 d = 1 ε 0 Qd (4.10) (4.11) d = 0.1mm( ) C = 1F C = ε 0 d = Cd ε (4.12) = = (3km) 2 (4.13) 1F 1µF = 10 6 F (4.14) 1pF = F (4.15) (4.16) google V E σ (FY2009/8 : 2009/12/3 ) 4.5: q ( C) dq dw dw = V dq = q C dq (4.17) 0 Q Q Q q W = dw = V dq = C dq = 1 Q 2 2 C = 1 2 CV 2 (4.18) 0 0 U e U e = 1 Q 2 2 C = 1 2 CV 2 (4.19)

47 4.3. ( ) (2 ) 2 E = Q (4.20) ε 0 C = ε 0 (4.21) d (FY2013/8 : 2013/12/12 ) Q C U e = 1 Q 2 2 C = 1 2 E2 ε d ε 0 = ε 0 2 E2 d = ε 0 2 E2 v, (4.22) v d (4.23) E u e = 1 2 ε 0E 2 = 1 2ε 0 D 2 = 1 2 ED V U e = ε 0 E 2 ( r)dv 2 V (4.24) (4.25) a b l λ ( +λ λ) r E(r) = λl ε 0 1 2πrl = λ ε 0 1 2πr 0 φ(r) = r b E tds = b r E(r)dr = b r λ 1 ε 0 2πr dr = λ [ln r] b r ε = 0 V = φ(a) φ(b) = λ ( ) b ln 2πε 0 a Q = λl C = Q V = 2πε 0l ln(b/a) λ 2πε 0 ln ( ) b r (4.26) (4.27) (4.28) (4.29) 4.3 ( ) (FY2010/7 : 2010/11/25 )

48 b a O + + r + - E(r) :

49 I [A] = [C/sec] i n i[a/m 2 ] I I = i( r) n( r)d (5.1) i θ n 5.1: i I ( ) { i( r) n( r)} d = 0 (5.2) i( r) = 0 (5.3) 5.2 I V R[Ω] R V I (5.4)

50 50 5 n i l 5.2: i I R = ρ l σ 1 ρ (5.5) (5.6) ρ[ω m] σ[1/ω m] I = V R = El σ l i = I = σe = σe (5.7) (5.8) i( r) = σe( r) (5.9) PN 5.3 m e E v m dv dt = ee 0 τ l l = 1 ee 2 m τ 2 v v = l τ = ee 2m τ (5.10) (5.11) (5.12)

51 v n i i = en v = ne2 τ 2m E = σe σ = ne2 τ 2m τ l 1 W W = eel = e2 E 2 2m τ 2 P P = n W τ = ne2 E 2 2m τ = E i = σe 2 = 1 σ i2 (5.13) (5.14) (5.15) (5.16) (5.17) (FY2009/9 : 2009/12/10 ) (FY2011/7 : 2011/12/15 ) (FY2013/9 : 2013/12/19 )

52

53 : ( ) F = qq 1 4πε 0 r r 1 r r 1 3 (6.1) q m q m1 F F = q mq m1 4πµ 0 r r 1 r r 1 3 (6.2) H H( r) = q m 1 r r 1 4πµ 0 r r 1 3 (6.3) F = q mh( r) (6.4) µ 0 µ 0 = 4π 10 7 [N/A 2 ] (6.5) q m H q m [Wb] ( ) (6.6) H[A/m] (6.7) E D H B B = µ 0 H (6.8) : : 2 ( 6.1) R 2 I I 1 l l : F = µ 0 II 1 2π R l (6.9)

54 54 6 I 1 F I l[m] R 6.1: D B l : F = µ 0 I 1 Il = BIl 2π R (6.10) B = µ 0 I 1 2π R (6.11) B B [T]( ) l = 1[m] I = 1[A] B = 1[T] F = 1[N] B = 1[T] = F/Il = 1[N/A m] (6.12) I 1 = 1[A] 1[m] B B = µ 0 I 1 2π R = 4π π 1 1 = [T] (6.13) 1[gauβ] = 10 4 [T] (6.14) B H H = I 1 2πR 1A 1/2π[m] 1[A/m] (6.15) [gauβ]( 0.45[gauβ] ) A( ) 800[gauβ] ( 1984 ) 5000[gauβ] 8000[gauβ] 6.2 :

55 6.3. : ( ) 55 I B 6.2: { } B( r) n( r) d = 0 (6.16) B( r) = 0 (6.17) 6.3 : ( ) C { B( r) t( r)} ds = 0 (6.18) C B( r) = 0 (6.19) : ( B i ) B(R) = µ 0 I 2π R (6.20) 2πRB(R) = µ 0 I (6.21) 2πRH(R) = I (6.22) (6.23)

56 56 6 I R C { B( r) t( r)} ds = B(R) 2πR = µ 0 I 2π R 2πR = µ 0I (6.24) C ( 6.2) C C { B( r) t( r)} ds = µ 0 C ( 6.3) (FY2010/8 : 2010/12/2 ) { i( r) n( r)} d (6.25) { {( B( r) t( r)} ds = B ) } { n( r) d = µ 0 i( r) n( r)} d (6.26) C B( r) = µ 0 i( r) (6.27) H( r) = i( r) (6.28) I i B C 6.3: B ( ) (?) ( ) ( &) n[ /m] H H { B( r) t( r)} ds = µ 0 C C { H( r) t( r)} ds = { i( r) n( r)} d (6.29) { i( r) n( r)} d (6.30) C 6.4 ABCDA { ( ) = H( r) t( r)} ds = Hl (6.31) C

57 ABCDA n[ /m] l[m] = nl[ ] I { ( ) = i( r) n( r)} d = nli (6.32) Hl = nli H = ni, B = µ 0 ni (6.33) (6.34) (FY2009/10 : 2009/12/17 ) (FY2011/8 : 2011/12/22 ) 6.4: A ( A B ) E = 0 (6.35) E = φ (6.36) φ B = µ 0 i 0 (6.37) B = 0 (6.38) X ( X ) = 0 (6.39) ( ) B = A (6.40) A A A = 0 (6.41)

58 58 6 A 2 A = 0 A B = A A A( 0) = f F = f F = 0 F ( E = ρ/ε 0 E = 0 E ) ( A F ) = 0 ( A F ) = A A F A A 0 (AB ) AB ( ) ( A B i ) () ρ ε 0 = 2 φ (6.42) φ E E ρ A i A(φ ) B( E ) B i(ρ ) 2 µ 0 i( r) = B( r) (6.43) B = A µ 0 i( r) = B( r) = ( A( r) ) (6.44) (6.45) X ( X) = ( X) 2 X (6.46) A = 0 µ 0 i = ( A) = ( A) 2 A = 2 A (6.47) (FY2013/10 : 2013/12/26 ) µ 0 i( r) = 2 A( r) (6.48) µ 0 i x = 2 A x ( r) x A x ( r) y A x ( r) z 2 x (6.49) ( i A ) µ 0 i x ( r) = 2 A x ( r) x A x ( r) y A x ( r) z 2 (6.50)

59 ρ( r) = 2 φ( r) = 2 φ( r) ε 0 x φ( r) y φ( r) z 2 (6.51) 1 ρ( r ) φ( r) = 4πε 0 r r dv A x ( r) = µ 0 4π A( r) = µ 0 4π V V V i x ( r ) r r dv i( r ) r r dv (6.52) (6.53) (6.54) ( 6.5) C I t A( r) = µ 0 4π = µ 0 4π V C i( r ) r r dv I t( r ) r r ds = µ 0I 4π C (6.55) t( r ) r r ds (6.56) A( r) = µ 0 i( r ) V 4π r r A( r) = µ 0 I t( r ) s 4π r r (6.57) (6.58) (6.59) V i( r ) A( r) t( r ) θ θ s V I C A( r) B( r) B( r) 6.5: - (FY2012/10 : 2012/12/20 ) : - ( i A B ) 1: B A rotation r s I t r B B( r) = µ 0 I s t( r ) ( r r ) 4π r r 3 (6.60)

60 60 6 Appendix C C B( r) = µ 0 I t( r ) ( r r ) 4π r r 3 ds C B( r) = µ 0 i( r ) ( r r ) 4π r r 3 dv V - - E( r) = 1 4πε 0 V ρ( r )( r r ) r r 3 dv 2 (6.61) (6.62) (6.63) 2: - (6.60) r = 0 ( 6.6) I R B B(R) = µ 0 I 2π R ( λ) R E E(R) = 1 λ 2πε 0 R λ s 2 E E = 1 λ sin θ s 4πε 0 r 2 I s B = µ 0 I sin θ s 4π r 2 (6.64) (6.65) (6.66) (6.67) λ s r sin θ rotation rotation ( ) 6.6 I s t r I s t r t r sin θ I s t r B B B( r) = µ 0 I s t r 4π r 3 (FY2010/9 : 2010/12/9 ) (6.68) a z z s B = µ 0I 4π s r 2 (6.69)

61 R E A R B θ r θ r λ s t I s t 6.6: 6.7 z B cos α = µ 0I 4π cos α r 2 s C B(z) = µ 0I cos α 4π r 2 ds = µ 0I cos α 4π r 2 2πa = µ 0 Ia 2 (6.71) 2(z 2 + a 2 ) 3/2 B(z = 0) = µ 0I 2a, C I H(z = 0) = 2a (6.70) (6.72) B cos α α A B A B B sin α z r r C I O a α s I s t 6.7:

62 u e = D 2 = 1 2ε 0 2 ε 0E 2 = 1 2 DE U e = ε 0 E 2 ( r)dv 2 V u m = 1 2µ 0 B 2 = 1 2 µ 0H 2 = 1 2 BH V U m = µ 0 H 2 ( r)dv 2 V (6.73) (6.74) (6.75) (6.76) LC (FY2009/11 : 2010/1/14 ) (FY2010/11 : 2010/1/14 ) (FY2011/9 : 2011/12/27 )

63 A A( r) = µ 0 4π V i( r ) r r dv i µ 0 i( r) = 2 A( r) アンペールの法則 ( 渦の法則 ) B( r) = µ 0 4π µ 0 i( r) = B( r) ビオ-サバールの法則 V B( r) = A( r) i( r ) ( r r ) r r 3 dv B アンペールの力 F = I t s B F = i V B 磁場に関するガウスの法則 B( r) = 0 B( r) n( r) d = 0 A = 0 に注意 アンペールの法則 ( 渦の法則 ) µ 0 i( r) = B( r) { µ 0 i n} d = C { B t} ds 6.8: i B A 3

64

65 : B l I F = µ 0II 1 2πR l F = IBl, B = µ 0I 1 2πR (7.1) (7.2) (7.3) F = I t s B (7.4) F = i V B (7.5) (FY2013/11 : 2014/01/09 ) : 7.1 a b a I b F = Ib B (7.6) N = F a sin θ 2 = IabB sin θ = IB sin θ (7.7) 2 = ab n N = I n B = µ 0 I n H = m H (7.8) m µ 0 I n (7.9) m q m ( ) F = q m H = q m µ 0 B (7.10)

66 : (a) (b) ±q m s m = q m s (7.11) N = m H (7.12) q m s µ 0 I n (7.13) µ 0 I N n 7.2:

67 7.2. : : q F = q v B (7.14) F = q( E + v B) (7.15) B ( m q > 0) m d v dt = q v B F v B qvb r m v2 = qvb r r = mv qb v 0 r = mv 0 qb ω 0 = v 0 r = qb m ω 0 (7.16) (7.17) (7.18) (7.19) (7.20) 7.3 K E B q F = q( E + v B) (7.21) v B v? K K K K K E E E K E B F = q( E + v B) = qe (7.22) E = E + v B (7.23) K K

68

69 69 8 : 8.1 D( r) = ρ( r) (8.1) B( r) = 0 (8.2) E( r) = 0 (8.3) H( r) = i( r) (8.4) D( r) = ε 0 E( r), B( r) = µ0 H( r) (8.5) (FY2010/10 : 2010/12/16 ) 8.2 : Φ φ em ( 8.1) 1 φ em = dφ dt B { } Φ = B n d φ em C( ) { φ em = E t} ds C 1 em induced electromotive force em ( ) (8.6) (8.7) (8.8)

70 70 8 : { E t} ds = d dt C { B n } d { {[ E t} ds = ] } E n d ( ) (8.10) C = d { } B n d (8.11) dt E( r, t) = B( r, t) t (8.9) (8.12) (8.3) (8.3) t = 0 B n C 8.1: φ em ( ) a B v q F F = q v B (8.13) F = qvb F = qe = qvb E = vb

71 φ em = ae φ em = ae = avb (8.14) B 8.2( ) AB CD φ em φ em ABCDA φ em = (B 1 B 2 )av (8.15) t v t Φ Φ = B 1 av t B 2 av t = (B 1 B 2 )av t (8.16) Φ t = (B 1 B 2 )av (8.17) dφ dt = (B 1 B 2 )av (8.18) (8.19) φ em = dφ dt (8.20) { E t} ds = d { } B n d (8.21) dt C (FY2011/10 : 2012/1/5 ) 8.3 I(t) Q(t) ( ) = () (8.22) dq(t) = I(t) (8.23) dt ρ( r, t)dv = i( r, t) n( r)d (8.24) t V

72 72 8 : A F a B q B v D F 2 B 2 v a C φ em A B 1 F 1 a v B 8.2: : ( ) ( i n) d = i dv ρ( r, t) t V (8.25) = i( r, t) (8.26) 8.4 -: E( r) = 0 (8.27) E( r, t) = B( r, t) t (8.28) (8.4) H( r, t) = i( r, t) (8.29) (8.26) div ( H( r, ) t) = i( r, t) (8.30) ( H ) 0 ρ t 0

73 8.4. -: 73 ρ (8.1) t D( r, t) = ρ( r, t) (8.31) ( t D( r, ) t) = t ρ( r, t) = i( r, t) (8.32) D( r, t) = i( r, t) (8.33) t ( (8.30) (8.30) (8.33) D( r, ) t)/ t ( H( r, ) t) D( r, t) t = i( r, t) (8.34) H( r, t) = i( r, t) + D( r, t) t (8.35) 2 D( r, t)/ t - E( r, t) = B( r, t) t (8.36)

74

75 D( r, t) = ρ( r, t) (9.1) B( r, t) = 0 (9.2) : E( r, t) = B( r, t) t (9.3) - : H( r, t) = i( r, t) + D( r, t) t (9.4) D( r, t) = ε 0 E( r, t), B( r, t) = µ0 H( r, t) (9.5) m d v dt = q ( E + v B ) (FY2010/11 : 2011/01/13 ) (9.6) ρ = 0 i = 0 D( r, t) = 0 (9.7) B( r, t) = 0 (9.8) E( r, t) = B( r, t) t H( r, t) = D( r, t) t (9.9) (9.10)

76 E B E + B t B E ε 0 µ 0 t E = 0 (9.11) B = 0 (9.12) = 0 (9.13) = 0 (9.14) (9.13) ( E ) + t B = 0 (9.15) 1 (9.11) ( E ) ( = E ) 2 E = 2 E (9.16) 2 (9.14) t B 2 E = ε 0 µ 0 t 2 ( 2 2 ) ε 0 µ 0 E t 2 = 0 (9.18) ( 2 2 ) ε 0 µ 0 B t 2 = 0 (9.19) E z (9.18) ( 2 z 2 ε 2 ) 0µ 0 E t 2 = 0 (9.20) ( 2 z ) F c 2 t 2 = 0 (9.21) c c = (9.17) 1 1 = ε0 µ π 10 = [m/s] (9.22) (FY2009/12 : 2010/1/21 )

77 (Partial Derivative Differentiation) ( ) f( r) f( r 0 + r) = f(x 0 + x, y 0 + y, z 0 + z) (9.23) [ ] [ ] [ ] f(x, y, z) f(x, y, z) f(x, y, z) f(x 0, y 0, z 0 ) + x + y + z (9.24) x r= r 0 y r= r 0 z r= r 0 f = f f f x + y + x y z z df = f f f dx + dy + x y z dz (9.25) (9.26) x = x(t), y = y(t), z = z(t) (9.27) f = f(x, y, z) = f (x(t), y(t), z(t)) = f(t) (9.28) df dt = f dx x dt + f dy y dt + f dz z dt (9.29) ( 1) f = f(r), r = r(x, y, z) (9.30) f r r x,y,z f/ x r = r(x, y, z) dr = r r r dx + dy + x y z dz df = df(r) dr dr (9.31) (9.32)

78 78 9 df = df(r) [ r r r dx + dy + dr x y ( ) ( df r df r = dx + dr x dr y df = f f f dx + dy + x y z dz f x = df r dr x ] z dz ) dy + ( df dr (9.33) ) r dz (9.34) z (9.35) (9.36) ( 2) x = x(u, v), y = y(u, v) (9.37) g = g(x, y) = g (x(u, v), y(u, v)) (9.38) x y u v g u v x u, g x, x v, g y, y u, g u, g v, g u g v = y v, x u x v y u y v g x g y g = g(x) g/ y = 0 g u = x g u x + y g x g (= 0) = u y u x = x g u x + y g u y x g v x + y g v y (9.39) (9.40) (9.41) (9.42) g x x u g u = x dg u dx (9.43) (9.44) 9.4 : 1 x r r n = [ (x x ) 2 + (y y ) 2 + (z z ) 2] n/2 x x = n x r r n+2 (9.45)

79 grad div rot ( ) X =0 ( X ) = ( X x ) + ( X x y ) + ( X y z ) (9.46) z = ( Xz x y X ) y + ( Xx z y z X ) z + ( Xy x z x X ) x (9.47) y ( ) ( ) ( ) 2 = y z 2 2 X x + z y z x 2 2 X y + x z x y 2 X z (9.48) y x = 0 (9.49) ( X ) ( = X ) 2 X ( ) : (x, y, z) (r, θ, φ) x = r sin θ cos φ y = r sin θ sin φ z = r cos θ grad : V (r, θ, φ) grad ( = r, 1 ) r θ, 1 r sin θ φ ( V grad V = V = r, 1 ) V r θ, 1 V r sin θ φ (9.50) (9.51) (9.52) (9.53) (9.54) div : A = (A r, A θ, A φ ) div div A = A = 1 ( r 2 ) 1 r 2 A r + r r sin θ θ (sin θa θ) + 1 r sin θ φ (A φ) (9.55) 2 : V (r, θ, φ) 2 = 2 V = 1 ( r 2 r 2 V ) ( 1 + r r r 2 sin θ V ) 1 2 V + sin θ θ r r 2 sin 2 θ 2 φ (9.56)

80 80 9 rot : A = (A r, A θ, A φ ) rot ( ( rot A = A = rot A ) (, rot ) ( A, rot ) ) A (9.57) r θ φ ( rot A ) { 1 = r r sin θ θ (A φ sin θ) A } θ (9.58) φ ( rot A ) 1 = θ r sin θ φ A r 1 r r (ra φ) (9.59) ( rot A ) = 1 { φ r r (ra θ) } θ (A r) (9.60) 9.6 : (x, y, z) (ρ, φ, z) x = ρ cos φ y = ρ sin φ z = z (9.61) (9.62) (9.63) grad : V (r, θ, φ) grad ( = ρ, 1 ρ φ, ) z ( V grad V = V = ρ, 1 V ρ φ, V ) z (9.64) (9.65) div : A = (A ρ, A φ, A z ) div diva = A = 1 ρ ρ (ρa ρ) + 1 ρ φ (A φ) + z (A z) (9.66) 2 : V (r, φ, z) 2 = 2 V = 1 { ( ρ V ) } V ρ ρ ρ ρ φ 2 + V ρ 2 z 2 rot : A = (A ρ, A φ, A z ) rot ( ( rota = A = rot A ) ) ( rota ) ( rota ) ρ φ ( rota ) z = 1 A z ρ φ A φ z = A ρ z A z ρ = 1 { ρ ρ (ρa φ) A } ρ φ ρ (, rot A ) (, rot ) A φ z (9.67) (9.68) (9.69) (9.70) (9.71)

81 81 ( ) I, II,,, IBN , IBN ( ),,, IBN ( ),,, IBN B (),,, IBN ,,, IBN ,,, IBN X E H, D B,,, IBN ,,,, IBN div, grad, rot,,,, IBN X,,,,, IBN ( ),, IBN ,,, ( / ),,, IBN ,

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

i

i 007 0 1 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................ 3 0.4............................................. 3 1

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4 4.1 conductor E E E 4.1: 45 46 4 E E E E E 0 0 E E = E E E =0 4.1.1 1) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4.1 47 0 0 3) ε 0 div E = ρ E =0 ρ =0 0 0 a Q Q/4πa 2 ) r E r 0 Gauss

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi 1999 1999 12 17 Contents 1 9 1.1........................ 9 1.2 (Cartesian )..................... 9 1.3........................ 10 1.4............................. 11 1.5............................. 12

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information