Similar documents
X u

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


LLG-R8.Nisus.pdf


GJG160842_O.QXD

B

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

B

TOP URL 1

untitled

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

総研大恒星進化概要.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

pdf

IA

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Mott散乱によるParity対称性の破れを検証

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Gmech08.dvi

( ) ,

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

The Physics of Atmospheres CAPTER :

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

30

untitled

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

untitled

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

QMI_10.dvi

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

27

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {


(高エネルギー) 広がったTEVガンマ線源VER J のX線観測による放射機構の研究

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1


Microsoft Word - 座談会「小泉政治」.doc

TOP URL 1

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

sikepuri.dvi

TOP URL 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

P01_表紙

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

I

01_教職員.indd


untitled

untitled

‘¬”R.qx

KENZOU

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

P1〜14/稲 〃

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Note.tex 2008/09/19( )

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

A

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

数学の基礎訓練I


Report10.dvi

1

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

( )

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

ohpr.dvi

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

QMI_09.dvi

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

QMI_10.dvi

Transcription:

1 2013 11 31

1 4 1.1 11................................. 4 2 5 2.1....................................... 5 2.1.1........................................ 5 2.1.2........................................ 5 2.1.3.................................... 5 2.2........................................ 5 2.2.1........................................ 5 2.2.2................................. 5 2.2.3........................... 5 2.2.4................................... 5 2.2.5........................................ 6 2.3........................................ 6 2.3.1.......................... 6 2.3.2................................. 6 2.3.3...................................... 6 2.3.4........................................ 8 2.4.................................... 8 2.4.1.................................... 8 2.4.2................................... 9 2.4.3................................. 9 3 9 3.1 XMM-Newton...................................... 9 4 9 4.1 LMC X-3........................................... 9 4.2 NGC6946 X-1......................................... 9 5 10 5.1............................................ 10 5.2............................................ 10 5.3......................................... 10 5.4.............................. 11 5.4.1 diskbb......................................... 11 5.4.2 powerlaw....................................... 12 5.4.3 phabs, wabs...................................... 12 6 13 6.1 LMC X-3........................................... 13 6.1.1........................................ 13 6.1.2..................................... 14 6.1.3..................................... 14

6.1.4.................................... 15 6.1.5........................................ 15 6.2 NGC6946 X-1......................................... 16 6.2.1........................................ 16 6.2.2..................................... 17 6.2.3.................................... 18 7 18 8 18

1 LMC X-3 diskbb+powerlaw LMC X-3 1.1 11

2 2.1 2.1.1 8M 2.1.2 10[km] 2.1.3 2.2 2.2.1 2.2.2 ( ) 2.2.3 2.2.4

2.2.5 T R( ) B( ) = 2hc2 1 5 e ( hc kt ) 1 (1) 4 5800K L = 4πR 2 σt 4 (2) 2.3 2.3.1 X ( ) X ( ) 2.3.2 r d dt ( dτ = 1 R s r ) 1 2 dt (3) R s M J Q Q = 0 J = 0 Q = 0 J 0 2.3.3

ψ eff = GM r r 1 GM r r 2 1 2 ω r 2 (4) 1: 1,2 4:1 (Frank et al. 2002 ) 1 L 1 ( 2) 2: S L 1

2.3.4 2 M : v = GM GM, : ω = r r 3, : L = GM r (5) E = 1 V (6) 2 Ṁ L disk = 1 GMṀ (7) 2 r s 2.4 2.4.1 F = σts 4 = 3 ( GMṀ 8π r 3 1 ) rs r σ, T s, r s (8)

2.4.2 2.4.3 3 X 3.1 XMM-Newton (ESA) X 1999 2 2013 0.2KeV 12KeV 4 4.1 LMC X-3 X (LMC X-3) 17 ( 52pc) 7 9M 2000 2 7 8 15548 sec 4.2 NGC6946 X-1 NGC6946 X diskbb+powerlaw

5 5.1 XMM-Newton 2 ODF(Observation Data Files) PPS(Pipeline Processing) ODF PPS 5.2 PPS 3: 5.3

4:. LMC X-3. 5.4 5.4.1 diskbb T in norm diskbb T in, r in T (r) 4 1 r 3 (9) Stefan-Boltzmann L disk T (r) = T in ( r r in ) 3 4 (10) L disk = 4πr 2 inσt 4 in (11) L disk fluxf disk, θ, D L disk = 2πD2 f disk cosθ (12) fluxf disk norm f disk = 2σ ( r in D )2 cosθt 4 in (13) K = ( r in D )2 cosθ (14)

5.4.2 powerlaw, X A(E) = KE Γ (15) K, Γ photon index 5.4.3 phabs, wabs n H M(E) = exp[n H σ(e)] (16) σ(e) phabs,wabs

6 6.1 LMC X-3 6.1.1 40 20 5: LMC X-3(mos1) 6: 200 1200 KeV 7: 8:

6.1.2 9: LMC X-3(mos1) 6.1.3 10: 40 11: 20 40

6.1.4 12: model:phabs*diskbb 13: model:wabs*(phabs+diskbb) wabs*(phabs+diskbb) wabs nh 6.81521E-02(10 22 ) powerlaw PhoIndex 2.34293 powerlaw norm 3.26286E 02 diskbb T in 0.865664(KeV) diskbb norm 29.1996 Reduced chi-squared = 1.1816 LMC X-3 6.1.5 = 67 D 50Kpc R in = 43.2km 14.4km M = 4.4M

6.2 NGC6946 X-1 6.2.1 200 1200 KeV 12 17 14: mos1 15: 12 mos2,pn mos1 16: mos2 17: PN

6.2.2 mos2.pn 18: mos1( ) 19: mos1( ) 20: mos2( ) 21: PN( )

6.2.3 mos1 22: model:phabs*(diskbb+powerlaw) phabs*(phabs+diskbb) wabs nh 0.751100(10 22 ) powerlaw PhoIndex 6.15994 powerlaw norm 1.45160E 03 diskbb T in 1.50129(KeV) diskbb norm 4.85241E-03 Reduced chi-squared = 1.341 7 NGC6946 mos2,pn LMC X-3 Perl 8 8.. 2. http://www.astro.isas.ac.jp/suzaku/index.html.ja Rao, Fengyun;Feng, Hua;Kaaret, Philip Detection of Strong Short-term Variability in NGC 6946 X-1