4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Size: px
Start display at page:

Download "4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5."

Transcription

1 A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h J s Planck k J K 1 Boltzmann u(ν, T ) T ν e hν c = m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c 3 λ = c/ν Wien u(ν, T )dν = 8πhν3 c 3 e hν kt dν E/ν ν/t 3. λ = 6000Å 100W (a) J ev (b) 1

2 4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. T λ ũ(λ, T ) Planck ũ(λ, T )dλ = 8πhc λ 5 1 e hc kt λ 1 dλ λ max λ max T = b Wien b hc 4.965k = m K (1 x 5 )ex = 1 2

3 6. Stefan-Boltzmann Wien λ max R = m; d = m; C = J m 2 s 1 ; 7. 3K Penzias Wilson λ max (E = hν = hc/λ) B eV 2000Å ev C 9. λ 0 E 0 p 0 λ = λ 0 + λ E p θ K p e ϕ (a) λ λ λ 0 = λ c (1 cos θ) 3

4 λ c h m e c = m = Å (b) cot θ 2 = (1 + hν 0 m e c ) tan ϕ, 2 ν 0 c λ 0 (c) 2hν K 0 m = e sin 2 θ c 2 2 E hν 0 m e sin 2 θ c 2 2 m e = MeV/c 2 = kg D 10. (?) de Broglie (a) 100m 10.00s 72kg (b) 155km/hour 145g (c) 10 6 m/s 11. K m de Broglie E 12. ρ e Thomson (a) (b) e = C R = m 4

5 13. k 0 = 1 4πϵ 0 = N m 2 /C 2 1eV = J m = kg e = C h = J s c = m/s (1) v r e 2 k 0 r = mv2 2 r L = mvr L L = n h 2π (n = 1, 2, ) n v n r n E n v n = 2πk 0e 2, r n = hn E n = 2π2 k0e 2 4 m h 2 n 2 h 2 4π 2 k 0 e 2 m n2, (2) 1 r 1 [m] E 1 [ev] r 1 r B r B r e k 0e 2 mc = m α k 0e 2 hc =

6 (3) λ e [m] 2πr B λ e R 1/α λ e = h mc, R 2πr B λ e (4) v n, r n, E n α, m, c, r e, n (5) ( h h 2π ) mc, mc 2, h mc, h mc 2 (6) Rydberg R k2 0e 4 m 4π h 3 c = m 1 E n Bohr ν = E i E f h = k2 0e 4 m 4π h 3 ( 1 n 2 f 1 ) n 2 i Rydberg 1/λ 6

7 14. f(x) = g(k)e ikx dk g(k) = { 0 (k < K, K < k) N ( K < k < K) N (a) f(x) (b) 15. f(x) 2 dx = 1 N (c) x k x k x k > 1 x = 2π/K f(x, t) = g(k)e i(kx ω(k)t) dk, g(k) = e α(k k 0) 2 k k = k 0 α β 1 ( d 2 ) ω k 2 dk 2 k=k 0 f(x, t) ( ) dω v g = dk k=k 0 7

8 16. f(x, t) = g(k)e i(kx ω(k)t) dk p E = p2 2m E = hω p = hk ω = p2 2m h, v g dω dk = p m ψ(x, t) = 1 2π h ϕ(p)e i(px Et)/ h dp ψ(x, t) i h h2 ψ(x, t) = t 2m 2 ψ(x, t) x r p h H = p2 2m k e 2 0 r 19. x p h/2 H = p2 2m mω2 x E t h m π r 0 ( c t) = m MeV/c 2 8

9 21. Schrödinger i h ( ) t ψ( r, t) = h2 2m + V ( r) ψ( r, t) 2 x y z 2 (a) ρ t + J = 0 ρ J ρ ψ ψ = ψ 2 J i h 2m [ψ ( ψ) ( ψ) ψ] (b) t = 0 ψ( r, t) 22. (a) ψ( r, t) = a exp[ ī ( p r Et)] (b) h ψ(r, t) = a r exp[ ī (pr Et)] h 23. ψ( r, t) Schrödinger V ( r) Ehrenfest d r dt = p m d p dt = V A ψ ( r, t)aψ( r, t)d 3 x 9

10 ( ) π 1 ( ) ψ(x) = exp αx2 α 2 α (a) x, x 2, x x 2 x 2 (b) p, p 2, p p 2 p 2 (c) x p 2a ψ(x) = π x 2 + a a 2 dx x 2 + a = π 2 a 2 (a) x, x 2, x (b) p, p 2, p (c) x p x 2 x 2 p 2 p θ( π θ π) ψ(θ) ψ(π) = ψ( π) L = i h d dθ 27. ϕ(p) ψ(x) x = p = ϕ(p) = 1 2π h ψ (x)xψ(x)dx = ϕ (p)pϕ(p)dp = ψ(x)e ipx/ h dx ϕ (p)i h d dp ϕ(p)dp ψ (x) h i d dx ψ(x)dx 10

11 28. p x [x, p] = i h e A e A e ipa/ h xe ipa/ h = x + a n=0 A n n! 29. Schrödinger i h ( t ψ(x, t) = h2 2 ) 2m x + V (x) ψ(x, t) 2 ψ(x, t) ψ(x, t) = ( 2πi hϵ [ ( 1 i 1 m ) 2 exp h 2 m(x x ) 2 )] V (x)ϵ ψ(x, t 0 )dx ϵ ϵ t t p E (E 2 = p 2 c 2 + m 2 c 4 ) ψ(x, t) = 1 2π h ϕ(p)e i(px Et)/ h dp ψ(x, t) ( 1 2 ) ( ) c 2 t 2 mc 2 ψ(x, t) + ψ(x, t) = 0 2 x 2 h ρ t + J x = 0 ρ J J i h ( ψ ψ ) 2m x ψ x ψ ρ 11

12 31. Schrödinger i h h2 ψ(x, t) = t 2m 2 ψ(x, t) + V (x)ψ(x, t) x2 ψ(x, t) = T (t)ϕ(x) ϕ(x) Schrödinger 32. a) O 1 ψ(x) = x 3 ψ(x) b) O 2 ψ(x) = x d dx ψ(x) c) O 3 ψ(x) = λψ (x) d) O 4 ψ(x) = exp(ψ(x)) e) O 5 ψ(x) = d x dx ψ(x) + a f) O 6ψ(x) = ψ(x )x dx 33. (a) O 6 ψ(x) = λψ(x) (b) (1) [O 1, O 2 ], (2) [O 2, O 6 ] 34. ( a < x < a) m V (x) = 0 ( x < a) = ( x > a) 12

13 a = m [J] n (a) x, p (b) x x 2 x 2, p (c) x p p 2 p V (x) = 0 ( x < a) = V 0 ( x > a) V ψ(x) = 1 ( x < a) = 0 ( x > a) p p + dp 37. P ψ(x) = ψ( x) P P

14 38. Schrödinger d 2 h2 ψ(x) + V (x)ψ(x) = Eψ(x) 2m dx2 (a) (b) V (x) = V ( x) ψ(x) = ψ( x) ψ(x) = ψ( x) (c) V (x) x = x 1 dψ(x)/dx ψ(x) 39. V (x) = 0 (x < 0) = V 0 (x > 0) E m x R T (a) V 0 < E (b) 0 < E < V V (x) = 0 ( x > a) = V 0 ( x < a) E m x R T E > 0 14

15 41. E m V (x) = 0 (x < 0, a < x) = V 0 (0 < x < a) x (a) V 0 < E R T (b) 0 < E < V 0 R T (c) V 0 E h 2 /2ma 2 T T V 0 E a 42. R T R + T = x m d 2 h2 2m dx ψ(x) mω2 x 2 ψ(x) = Eψ(x) 44. n (a) x 2 p 2 (b) K = p2 2m V = 1 2 mω2 x 2 (c) x p h/2 45. K V lim T 1 T T K dt = lim T T 15 T 0 x d dx V dt

16 Ô ψ (x, t)ôψ(x, t)dx K = p2 2m 2 K = x d dx V 46. U 0 δ(x) (U 0 ) m 47. V (x)( a V (x) = V (x + a)) (a) U exp(ipa/ h) Uψ(x) = ψ(x + a) (b) U H = p2 + V (x) 2m (c) ψ(x + a) = e iθ ψ(x) θ u(x) (u(x + a) = u(x)) ψ(x) ψ(x) = e ikx u(x) ka = θ 48. V (x) m V (x) = h2 γ ma n= δ(x + na) a γ 16

17 t ψ( x, t)  A ψ Âψd 3 x  A ψ Âψd 3 x = (Âψ) ψd 3 x 49. ˆp = i h Ĥ = h2 2m 2 + V ( x) ψ  ψ 1 ψ 2 ψ 2Âψ 1d 3 x = (Âψ 2) ψ 1 d 3 x 51.  ˆB [Â, ˆB] = iĉ (a) Ĉ = Ĉ (b) A B C /2 ( A) 2 A 2 A 2 ( B) 2 B 2 B 2 17

18 (c) (Â A )ψ = iα(( ˆB B )ψ α α 52. Â (a) Â (b) 53. Â ˆB (a) A B Â ˆB (b) Â ˆB 54. (1) ψ(x), (2) ψ(x) = ϕ(x)e ikx (ϕ(x) ) (3) Ĥ = 1 2m p2 + V ( x) 55. Â d A = A dt t + ī [H, A] h 56. δ (1) f(x)δ(x)dx = f(0), f(x)δ(x a)dx = f(a) (2) δ( x) = δ(x) (3) xδ(x) = 0 (4) δ(ax) = δ(x), (a > 0) a (5) δ(a 2 x 2 ) = 1 (δ(x a) + δ(x + a)), (a > 0) 2a (6) ϕ(x) d dx δ(x)dx = d dx ϕ(0) 18

19 Ĥ Ĥ = ˆp2 2m mω2ˆx 2 ˆx ˆp [ˆx, ˆp] = i h â â [â, â ] = 1 â mω 2 h ( ˆx + iˆp ) ( mω, â ˆx iˆp ) mω 2 h mω Ĥ Ĥ = hω( ˆN ) ˆN( â â) 58. Ĥ E n u n E n = hω(n ), u n = 1 n! (a ) n u 0, (n = 0, 1, 2,...) u 0 â u 0 = 0 â â â u n = n u n 1, â u n = n + 1 u n+1 u m u n = δ mn u n Ĥ E n (Ĥ u n = E n u n ) 19

20 59. ψ n (x) Ĥ u n ψ n (x) = x u n 57,58 ψ n (x) 43 Schrödinger d 2 h2 2m dx ψ(x) mω2 x 2 ψ(x) = Eψ(x) n 60. (a) u n ˆx u m, (b) u n ˆp u m, (c) u n [ˆx, ˆp] u m (d) x u n ˆx 2 u n u n ˆx u n 2 (e) p u n ˆp 2 u n u n ˆp u n (1) e λâ f(â)e λâ = f(â λ), (2) e αâ+βâ = e βâ e αâ e αβ 2 λ α β 62. ˆx ˆp â â h ˆx = 2mω (â + â ), ˆp = 1 i m hω 2 (â â ) ( ) h e ikˆx = exp ik 2mω â h exp ik 2mω â exp hk2 4mω < u 0 e ikˆx u 0 > 63. Schrödinger Heisenberg Heisenberg â â 20

21 64. α â α â α = α α α α = 1 (a) α â α = α α α α = 1 α = exp ( 1 ) α n 2 α 2 u n n! = exp n=0 ( 1 2 α 2 ) exp(αâ ) u 0 = exp(αâ α â) u 0 (b) α N α ˆN α α n P n = u n α 2 P n N (P n Poisson (c) α ˆx ˆp ( x p = h/2) x α ˆx 2 α α ˆx α 2 p α ˆp 2 α α ˆp α ˆQ ˆQ ( ˆQ σ + i d ) ( iw (x), dx ˆQ σ i d ) + iw (x) dx Ĥ σ + σ σ + = Ĥ 1 2 ( ˆQ ˆQ + ˆQ ˆQ) ( ), σ = 21 ( )

22 (a) ˆQ 2 ˆQ 2 ˆQ ˆQ (b) Ĥ (c) Ĥ ψ B(x) E(> 0) ψ F (x) = ˆQψ B (x) Ĥ ψ B (x) ( ) 0 ψ B (x) = ϕ(x) (d) Ĥ Ĥ (e) W (x) = λx λ (f) W (x) [x 0, x 1 ] W (x) W (x) x P (W (x P ) = 0) (W (x P ) 0) ψ B (x) ψ F (x) ± t 0 x t x G(x, t; x, t 0 ) = x exp( ī hĥ(t t 0)) x m G(x, t; x, t 0 ) G(x, t; x, t 0 ) Schrödinger Schrödinger ψ(x, t) 29 ψ(x, t) = G(x, t; x, t 0 )ψ(x, t 0 )dx 22

23 N 67. N V (x 1 x 2,..., x N 1 x N ) N 68. Schrödinger ( h2 2 h2 2 ) u(x 2m 1 x 2 1 2m 2 x 2 1, x 2 ) = Eu(x 1, x 2 ) 2 u(x 1, x 2 ) = ϕ 1 (x 1 )ϕ 2 (x 2 ) u(x 1, x 2 ) x X x = x 1 x 2, X = m 1x 1 + m 2 x 2 m 1 + m Schrödinger ( h2 2 h2 2 2m 1 2m 2 x 2 1 x 2 2 ) u(x 1, x 2 ) + V (x 1 x 2 )u(x 1, x 2 ) = Eu(x 1, x 2 ) x X V (x) = Ĥ = ˆp2 1 2m + ˆp2 2 2m mω2 x mω2 x

24 E n = hω(n ) 71. Ĥ = ˆp2 1 2m + ˆp2 2 2m + V (x 1, x 2 ), V (x 2, x 1 ) = V (x 1, x 2 ) (a) ˆP 12 ˆP 12 (b) ˆP (0 x a) m 74. (0 x a) m N E n = h2 π 2 2ma 2 n2, (n = 1, 2, 3,...) Bose Fermi N Fermi E F E F 24

25 3 I 75. N ) N? V ( x 1,..., x N ) = N i=1 1 2 mω2 x 2 i 76. a ( m ) (a) (b) E F (c) N (d) E F n = N a 3 (e) E tot N n R (f) E F = h2 kf 2 2m k F = 2π λ F λ F d = n 1/ /cm 3 (a) ev (b) 25

26 3 II ( ) 78. H = h2 2 2m x y V (r) r = (x 2 +y z 2 z 2 ) 1/2 z θ { x = x cos θ y sin θ y = x sin θ + y cos θ Hψ(x, y, z) = Eψ(x, y, z) z 79. L = (L x, L y, L z ) ( L x = i h y z z ) (, L y = i h z y x x ) z ( L z = i h x y y ) x (a) [L x, L y ] = i hl z, [L y, L z ] = i hl x, [L z, L x ] = i hl y (b) L 2 L x L y L z ( ) (c) L z Ĥ = h2 2 2m x y V (r) 2 z 2 26

27 80. L 2 + ( r p) 2 = r 2 p 2 + i h r p p 2 = 1 ( L r 2 h 2 1 r ) 2 h r 2 r r r 81. ( ) ] [ h2 2 2µ x y V (x, y, z) ψ(x, y, z) = Eψ(x, y, z) 2 z 2 ( h2 2 2µ r r r + 1 r 2 sin θ ( sin θ ) + θ θ 1 2 ) r 2 sin 2 ψ(x, y, z) θ ϕ 2 + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z) V = V (r) ψ = R nlm (r)y lm (θ, ϕ) R nlm (r) ( [ h2 d 2 2µ dr + 2 ) ] d l(l + 1) + V (r) R 2 r dr r 2 nlm (r) = ER nlm (r) Y lm (θ, ϕ) l(l +1) h,(l = 0, 1, 2,...) r r 2 V (r) 0 (a) u nlm (r) = rr nlm (r) u nlm (r) (b) r = 0 (c) r V (r) 0 27

28 82. V (r) = 0 (a) ρ = kr R nlm (r) (b) (c) ρ l (b) 83. (c) V (r) V (r) l E (0) l 85. V (r) = 0 (r < a), V (r) = (r > a) l l = V (r) = V 0 (r < a), V (r) = 0 (r > a) E (a) r < a (b) r > a r 0 (c) (a) (b) r = a (d) κa 1 ( E V 0 ) (c) E κ 2 = 2µ h 2 (V 0 + E) 28

29 87. (x, y, z) = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ) L = (L x, L y, L z ) L ± L x ± il y 88. L z Φ m (ϕ) = m hφ m (ϕ) Φ m (ϕ) Φ m (ϕ) ϕ m 89. (a) I H = 1 2I L z 2 (b) N 2π N 90. L ± L x ± il y (a) L 2 = L + L + L z 2 hl z, L 2 = L L + + L z 2 + hl z (b) [L +, L ] = 2 hl z, [L z, L + ] = hl +, [L z, L ] = hl [ L 2, L + ] = 0, [ L 2, L ] = 0 29

30 91. L 2 L z (a) L 2 L z Y λm L 2 Y λm = λ h 2 Y λm L z Y λm = m hy λm λ m 2 (b) L ± Y λm L 2 L z (c) Y λmmax, Y λmmin L + Y λmmax = L Y λmmin = 0 (d) m max = l λ = l(l + 1) (l = 0, 1 2, 1, 3, ) L 2 Y lm (θ, ϕ) L 2 Y lm = l(l + 1) h 2 Y lm, L z Y lm = m hy lm Y lm (θ, ϕ) = Θ(θ)e imϕ Θ(θ) Y lm (θ, ϕ) Y lm (θ, ϕ) = C m l e imϕ (1 u 2 ) m/2 d l m du l m (1 u2 ) l u = cos θ C m l L + Y ll = 0 30

31 93. m p e m e e V (r) = e 2 /r ( h2 d 2 2µ dr + 2 ) d l(l + 1) R 2 r dr r 2 nl (r) e2 r R nl(r) = ER nl (r) 8µ E µ(= m e m p /(m e + m p )) ρ = h 2 r, λ = e2 µ µ h 2 E = cα 2 E ˆR nl (ρ) = R nl (r) 94. ˆR nl (ρ) (a) ρ (b) ˆR nl (ρ) = e ρ/2 G(ρ) G(ρ) (c) G(ρ) = ρ l L(ρ) L(ρ) (d) L(ρ) = a k ρ k R nl (r) k=0 E n n(= λ) (e) ψ nlm = R nl (r)y lm (θ, ϕ) 31

32 95. R 10, R 20, R 21 (n = 1,l = 0) r r P nl (r) P nl (r) r 2 (R nl (r)) 2 P nn 1 (r) r 98. k + 1 n 2 r k (2k + 1)a 0 r k 1 + k 4 [(2l + 1)2 k 2 ]a 2 0 r k 2 = 0 a 0 = h2 Kramers µe2 99. Kramers r 1, r, r p 2 µ 32

33 101. ( m e) L (c ) L = 1 ( ) 2 d x 2 m eϕ( x, t) + e A( x, dt c t) d x dt (a) L m d2 x dt 2 = e ( E( x, t) + 1 ) d x c dt B( x, t) E = ϕ 1 c A t, B = A 102. (a) { ϕ( x, t) ϕ ( x, t) = ϕ( x, t) + 1 λ( x, t), c t A( x, t) A ( x, t) = A( x, t) λ( x, t) λ( x, t) 103. (a) H H = 1 ( p e A( x, 2m c 2 t)) + eϕ( x, t) H 33

34 104. ( m e) i h Ψ( x, t) = ĤΨ( x, t) t ( h 2 ( = ie A( x, 2m hc ) 2 t) + eϕ( x, t)) Ψ( x, t) (a) (b) (Ψ( x, t) = e iet/ h ψ( x)) ψ( x) (c) A = 1 2 x B, ϕ = e/r, B = (0, 0, B) (B ) ( h2 2m 2 eb 2mc L z + e2 B 2 ) 8mc 2 (x2 + y 2 ) e2 ψ( x) = Eψ( x) (b) r (d) (b) L z h, x 2 + y 2 a 2 0, r a 0 a B (b) 106. ϕ( x) (b) (x = ρ cos φ, y = ρ sin φ) 107. ϕ( x) h 2 ( ie A( x) 2m hc ) 2 ψ( x) = Eψ( x) A = (0, Bx, 0) 34

35 108. u n = 1 n! (â ) n u 0 (a) â â ˆx ˆp Ĥ = hω(â â+ 1 2 ) (Ĥ) mn u m Ĥ u n = hω (b) u 0 = (1, 0, 0,...) T u n u m u n = δ mn T 109. ψ = 1 2 (1, 1, 0, 0,...) T (a) Ĥ (b) ˆx, ˆx 2, ˆp, ˆp 2 (c) x p 35

36 L 2 l, m = h 2 l(l + 1) l, m L z l, m = hm l, m l, m L z l, m = hmδ m m l, m L ± l, m = h l(l + 1) m(m ± 1)δ m m± L z, L +, L (a) l = 1 2 (b) l = 1 (c) l = 3 2 (c) L x, L y, L z 111. n L n αk ( L n) k = ( S = h σ) 2 (a) S z (b) S x cos ϕ + S y sin ϕ S z h n = (sin θ cos ϕ, sin θ sin ϕ, cos θ) σ σ n σ n σ z 1 ψ (+) σ z 1 ψ ( ) 36

37 Ĥ Ĥ = M B B M g = 2(1 + α 2π + ) = S M = eg 2mc S ( S = h σ) 2 (a) ψ(t) = (ψ (+) (t), ψ ( ) (t)) T B = (0, 0, B) (b) ψ(0) = (ψ (+) 0, ψ ( ) 0 ) T (c) S x h 2 S x S y 115. S (a) B = (0, 0, B) (b) S z S x + is y 37

38 116. S 1 = h σ 1 /2 S 2 = h σ 2 /2 2 S 2 1 S 1z χ (1) +, χ (1) S 2 2 S 2z χ (2) +, χ (2) (a) S = S 1 + S 2 S 2 S z (b) S 1 S L S = h σ/2 J = L + S ψ j,m+ 1 = αy l,m χ + + βy l,m+1 χ J 2 2 α β S + χ + = S χ = 0, S ± χ = hχ 118. L (a) S 2 S z S 1 (b) S z h, 0, h ξ +, ξ 0, ξ S + S (c) J 2 ψ j,m+1 = αy l,m ξ + + βy l,m+1 ξ 0 + γy l,m+2 ξ J J = L + S (d) J 2 ψ j,m = h 2 j(j + 1)ψ j,m α, β, γ 38

39 119. J 2 1 J 1z ψ (1) J 1,M 1 J 2 2 J 2z ψ (2) J 2,M 2 J 2 = ( J 1 + J 2 ) 2 J z = J 1z + J 2z ψ J,M ψ J,M ψ (1) J 1,M 1 ψ (2) J 2,M 2 ψ J,M = J 1 J 2 M 1 M 2 JM ψ (1) J 1,M 1 ψ (2) J 2,M 2 M 1,M 2 Clebsch-Gordan (a) Clebsch-Gordan JM J 1 J 2 M 1 M 2 J 1 J 2 M 1 M 2 J M = δ JJ δ MM M 1,M 2 J 1 J 2 M 1 M 2 JM JM J 1 J 2 M 1M 2 = δ M1 M 1 δ M 2 M 2 J (b) Clebsch-Gordan J(J + 1) M(M ± 1) J 1 J 2 M 1 M 2 JM ± 1 = J 1 (J 1 + 1) M 1 (M 1 1) J 1 J 2 M 1 1M 2 JM + J 2 (J 2 + 1) M 2 (M 2 1) J 1 J 2 M 1 M 2 1 JM J = L + 1, L, L 1 V (r) V (r) = V 1 (r) + ( S L) h 2 V 2 (r) + ( S L) 2 h 4 V 3 (r) 121. S 1 S 2 2 A,B,C H = A + B h 2 S 1 S 2 + C h (S 1z + S 2z ) (a) 1/2 (b) 1/2 1 39

40 122. H 0 {ϕ n } E 0 n H 0ϕ n = E 0 nϕ n λ H = H 0 + λh 1 ψ n E n λ λ H ? λ 124. H H = H 0 + λh ( 1 ) E 0 H 0 = E2 0 ( ) α γ H 1 = γ β (a) λh 1 H 0 H λ (b) H λ λ (a) 125. H 0 H 0 = p2 2µ e2 r 40

41 ψ nlm = R nl (r)y lm (θ, ϕ) ψ 200,ψ 211,ψ 210, ψ 21 1 eez E H = H 0 + eez d H 0 = h2 2m dx + mω2 2 2 x2 = hωa a λh 1 (a) λh 1 = λx 4 λ (b) λh 1 = λx 3 λ 127. ψ(x) H H H ψ (x)hψ(x)dx (a) ψ(x) H u n (x) ( E n ) ψ(x) = a n u n (x) H E n n a n (b) E 0 H E 0 41

42 (c)? ψ α () ψ 0 (x, α) α F (α) F (α) α α 0 ψ 0 (x, α 0 ) 128. H d 2 H = h2 2m dx + mω2 2 (a) 2 x2 ψ 0 (x, α) = Ae αx2 (α > 0, A ) ψ 0 (x, α 0 ) F (α 0 ) π e bx2 dx = b e bx2 x 2 dx = 1 2 π b 3 (b) (a) ψ 0 (x, α 0 ) H (c) ψ 1 (x, β) = (B + Cx)e βx2? (B, C β ) 42

43 Get!! Get!! Get! 1 Get! Get!!

44 !! a) Boltzmann b) E u(ν, T )dν = (ν ν + dν ) E (ν ν + dν ) = 8πν 2 dν/c 3!! Change! 44

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

0 4/

0 4/ 04 II 6 7 5 0 4/8 0............................. 0.... 0.3............................ 0.4................... 5 0.5.................... 5 7.......................... 7............................ 7........................

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Planck Bohr

Planck Bohr I 30 7 11 1 1 5 1.1 Planck.............................. 5 1. Bohr.................................... 6 1.3..................................... 7 9.1................................... 9....................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

0 3 1 5 1.1.............................. 5 1. 3.................. 6 1.3.......................... 7 1.4.............................. 8 1.5.............................. 10 1.6.................................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

eto-vol2.prepri.dvi

eto-vol2.prepri.dvi ( 2) 3.4 5 (b),(c) [ 5 (a)] [ 5 (b)] [ 5 (c)] (extrinsic) skew scattering side jump [] [2, 3] (intrinsic) 2 Sinova 2 heavy-hole light-hole ( [4, 5, 6] ) Sinova Sinova 3. () 3 3 Ṽ = V (r)+ σ [p V (r)] λ

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

27 1 21 19 i WKB ii i 1 1 1.1................................. 1 1.2......................................... 1 1.2.1.................................. 1 1.2.2.................................. 3 1.3........................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

19 /

19 / 19 / 1 1.1............................... 1. Andreev............................... 3 1.3..................................... 3 1.4..................................... 4 / 5.1......................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information