カイラル結晶化ver3pp.dvi

Similar documents
応力とひずみ.ppt

薄膜結晶成長の基礎3.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

73

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

薄膜結晶成長の基礎4.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

i 18 2H 2 + O 2 2H 2 + ( ) 3K

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


I II III 28 29

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ


取扱説明書 [N-03A]

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

A

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

Untitled

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k


1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio


Chap10.dvi

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

( ) ( )

i


Wide Scanner TWAIN Source ユーザーズガイド

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

note1.dvi


untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

第1部 一般的コメント

x ( ) x dx = ax

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

第1章 国民年金における無年金

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

橡ミュラー列伝Ⅰ.PDF

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

取扱説明書[N906i]


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

( ) Loewner SLE 13 February

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

genron-3

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

高校生の就職への数学II

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

液晶の物理1:連続体理論(弾性,粘性)

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

Acrobat Distiller, Job 128

1 c Koichi Suga, ISBN

sec13.dvi


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

provider_020524_2.PDF

Gmech08.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

「産業上利用することができる発明」の審査の運用指針(案)

『共形場理論』

入試の軌跡



18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

DE-resume

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

notekiso1_09.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Transcription:

464-8602 (Dated: March 14, 2008) Abstract () PACS numbers: 81.10.-h, 64.60.Qb, 82.20.-w Electronic address: uwaha@nagoya-u.jp 1

I. [1] [2] 20 L [3] D D D BCF Frank [4] D L [5] 2 D L D L [6] D L [7] SiO 2 SiO 4 2

? II. Kondepudi NaClO 3 [8] D L D L D L 50 D L D L NaClO 3 NaBrO 3 [9] 1,1 - (binaphthyl) [9 11] 2 2 [12] 2 (whisker) 2 [13] Kondepudi [14] [15] A B A B A B D L 3

Α x 2 FIG. 1: x A+B D, A+B L, (1) A+B+D 2D, A+B+L 2L, (2) D L S S ( ABDLS ) D+L S (3) D L D L D xl y α = x y x + y D L (enantiomeric excess) α AB xy = x 2 2 α ( 1) NaClO 3 Viedma [16] D L 200μm D L 1 4 (4)

D L DL 1 D L D L 2 Ising (Gibbs-Thomson ) NaClO 3 III. [17]5 : AD D L L, D u L u NaClO 3 4 [16] 2 A+A D u, A+A L u, (5) 2 D u +D u D, L u +L u L, (6) A+D D, A+L L, D u +D D, L u +L L, (7) 5

z x xu yu y (a) 1 x y z (b) 0 100 200 300 FIG. 2: k 0 =0.1, k 1 = k u =1,k c =0.01, λ 0 =0.1λ 1 = λ u =0.05 x(0) = 0.001y(0) = x u (0) = y u (0) = 0z(0) = 0.999 (a) (b) [17] D L ADD u LL u zxx u yy u dx dt = k 1zx + k u x u x + k c x 2 u λ 1x λ u x, (8) dy dt = k 1zy + k u y u y + k c yu 2 λ 1y λ u y, (9) dx u dt = k 0z 2 k u x u x k c x 2 u + λ ux λ 0 x u, (10) dy u dt = k 0z 2 k u y u y k c yu 2 + λ uy λ 0 y u, (11) dz dt = 2k 0z 2 k 1 zx k 1 zy +λ 1 x + λ 1 y + λ 0 x u + λ 0 y u. (12) (5)-(7) k λ 6

1 x y xu,yu z (a) 0 10 20 30 1 x z y xu yu 0 1000 500 (b) FIG. 3: 2 x(0) = 0.101, y(0) = 0.100x u (0) = y u (0) = 0 z(0) = 0.799 [17] Ostwald [20] (8)-(12) k 0 =0.1k 1 = k u =1k c =0.01, λ 0 =0.1λ 1 = λ u =0.05 x(t)+x u (t)+y(t)+y u (t)+z(t) =1 2 D x(0) = 0.001y(0) = x u (0) = y u (0) = 0z(0) = 0.999 x u y u 7

L y, yu U x, xu R FIG. 4: (x(t),y(t)) (x u (t),y u (t)) () 1 2 2 3 [17] xy t 20 D L 5 t 200 L y L y u 3 x(0) = 0.101, y(0) = 0.100x u (0) = y u (0) = 0 L 1 t 10 t 100 t 900 L D u L u A 4 x(0) >y(0)x u (0) = y u (0) = 0 (x(t),y(t)) (x u (t),y u (t)) (8)-(12) RLU 3 [19] R L U 3 x = yx u = y u U R L R L x =0 y =0x y 8

IV. III () 2 D i L i i (5) D u L u D 2 L 2 i 2 A +D i D i+1, A+L i L i+1 (13) 2 6 2 D 2 +D 2 D 4, L 2 +L 2 L 4 (14) D 6 3D 2, L 6 3L 2 (15) 7 (12) 13 2 (14) D 6 L 6 3 Cartwright [21] A D 1, A L 1, (16) A +D i D i+1, A+L i L i+1, (17) D i D i s + sd 1, L i L i s + sl 1, (18) D 1 L 1 (16) Ostwald (18) D 1 L 1 2 2 2 (17) (18) 2 A 2 100 Ostwald III 9

L D k1 ku Lu A Du FIG. 5: (?) (16) Ostwald V. III IV [22] (2-- ) NaClO 3 () A 2 A d A l [23] III (D u +D u DL u +L u L) (A + A D u A+A L u ) McBride Tully [24]( 5) 4 (8)-(12) k 1 k u λ 0 λ u 3 D 10

L D L L D - IIIIV [1] [2] Chiral [3] d D (dextrorotatory) L (levorotatory) dl D L RS DL DL [4] F. C. Frank: Biochim. Biophys. Acta, 11 (1953) 459. [5] :?? [6] :?? [7] :?? [8] D. K. Kondepudi, R. Kaufman and N. Singh: Science 250 (1990) 975. [9] D. K. Kondepudi and K. Asakura, Acc. Chem. Res. 34 (2001) 946. [10] R. E. Pincock, R. R. Perkins, A. S. Ma and K. R.Wilson, Science 174 (1971) 1018. 11

[11] D. K. Kondepudi, J. Laudadio, K. Asakura, J. Am. Chem. Soc. 121 (1999) 1448. [12] R.-U. Qian and G. D. Botsaris: Chem. Eng. Sci. 53 (1998) 1745. [13] J. H. E. Cartwright, J. M. Garcia-Ruiz, O. Piro, C. I. Sainz-Diaz, and I. Tuval: Phys. Rev. Lett. 93 (2004) 035502. [14] D. K. Kondepudi and G. W. Nelson: Phys. Rev. Lett. 50 (1983) 1023. [15] : 34 (2007) 63. [16] C. Viedma: Phys. Rev. Lett. 94 (2005) 065504. [17] M. Uwaha: J. Phys. Soc. Jpn. 73 (2004) 2601. [20] Y. Saito and H. Hyuga: J. Phys. Soc. Jpn. 73 (2004) 33. [19] 4 [20] Y. Saito and H. Hyuga: J. Phys. Soc. Jpn. 74 (2005) 535. [21] J. H. E. Cartwright, O. Piro, and I. Tuval: Phys. Rev. Lett. 98 (2007) 165501. [22] W. L. Noorduin, T. Izumi, A. Millemaggi, M. Leeman, H. Meekes, W. J. P. Van Enckevort, R. M. Kellogg, B. Kaptein, E. Vlieg, and D. G. Blackmond: J. Am. Chem. Soc. 130 (2008) 1158. [23] J. M. McBride, J. C. TullyNature 452 (2008) 161. [22] Ostwald [24] J. M. McBride, NORDITA Origins of homochirality (2008 2 ) http://nordita.org/programs/homochirality Chiral Symmetry Breaking in Crystallization Makio Uwaha Department of Physics, Nagoya University Spontaneous chiral symmetry breaking in crystallization is briefly reviewed. Experimentally crystallization of several substances such as NaClO 3 from supersaturated solution with stirring produces strong chiral symmetry breaking. In addition, stiring and grinding of racemic mixture of chiral crystals in solution results in chirality transformation, and complete symmetry breaking is realized. Several models to explain these experiments are introduced, and the mechanism of autocatalytic processes is discussed at a phenomenological level. 12