量子フィードバック制御のための推定論とその応用

Similar documents
ばらつき抑制のための確率最適制御

(q(t),p(t)) (q(t),p(t)) q = E[q], p = E[p], v 1 = E[(q q) 2 ], v 2 = E[(q q)(p p)], v 3 = E[(p p) 2 ]. ( t ). v 2 (t) q(t) p(t) E ξ(t), q(t), p(t) ()

1 c Koichi Suga, ISBN

[3] 2 2

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

The Plasma Boundary of Magnetic Fusion Devices

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1


- 2 -


1 (1) (2)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

ohp_06nov_tohoku.dvi

ver.1 / c /(13)

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

FA $*1$ $*$ 1, $*$2 : $*2$ : Takehiro Takano $*$ 1, Katsunori Ano*2 $*1$ : Graduate School of Engineering and Science, Shibaura Ins

カルマンフィルターによるベータ推定( )



D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

mugensho.dvi

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

xia2.dvi


応用数学III-4.ppt

曲面のパラメタ表示と接線ベクトル

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

{ 8. { CHAPTER 8. Å (sampling time) x[k] =x(kå) u(ú) t t + Å (u[k]) x[k + 1] =A d x[k] +B d u[k] (8:) (diãerence equation) A d =e AÅ ; B d = Z Å 0 e A

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

( ) f a, b n f(b) = f(a) + f (a)(b a) + + f (n 1) (a) (n 1)! (b a)n 1 + R n, R n = b a f (n) (b t)n 1 (t) (n 1)! dt. : R n = b a f (n) (b t

DE-resume


08-Note2-web

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

FX ) 2

FX自己アフリエイトマニュアル

I II III 28 29

v er.1/ c /(21)

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

<93648E718A7789C F83582E696E6462>

<8AC28BAB8A7789C F83582E696E6462>

「国債の金利推定モデルに関する研究会」報告書

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

スライド タイトルなし

IntroductionToQuantumComputer

01_教職員.indd


untitled


CD納品用.indd


Vol.50, No.6, 445/ Explicit MPC A Controller Design for a Diesel Engine Air-path System Based on Explicit MPC Akira Kojima, Kazuaki Sawado, Ts

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow


(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

Microsoft Word - 信号処理3.doc

ドキュメント1

boost_sine1_iter4.eps

平成26年度 学生要覧

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

untitled


(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

ds2.dvi

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

RX501NC_LTE Mobile Router取説.indb

‚æ01Łª“û†œ070203/1‘Í

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代


(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

sakigake1.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

??

pdf

量子情報科学−情報科学の物理限界への挑戦- 2018

Mathematica を活用する数学教材とその検証 (数式処理と教育)

body.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

Transcription:

834 203 96-08 96 * Naoki Yamamoto Department of Applied Physics and Physico-Informatics Keio University PID ( ) 90 POVM (i) ( ) ( ), (ii) $(y(t))$ (iii) $(u(t))$ 3 223-8522 3-5-3

$f$ $t$ 97 [,2] [3] [4] $\iota---$ Feedback control for atomic ensemble 2 2. ( ) $\dot{x}_{t}=ax_{t}+bu_{t}, y_{t}=cx_{t}$

98 $u_{t}$ $A,$ $B,$ $C$ $A$ $($ $u_{t}=0)$ $x_{t}arrow\infty$ $x_{0}$. ( ) $u_{t}=k$ $x_{t}$ $(\dot{x}_{t}=dx_{t}/dt)$. $x_{t}$ $\dot{x}_{t}=(a+bkc)x_{t}$ $K$ $A+BKC$ )$ $x_{t}arrow 0$ $(A, B, C $x_{t}$ $\dot{x}_{t}=x_{t}+ue^{x_{t}}, y_{t}=x_{t}$ () $u_{t}=0$ $V(x)=x^{2}$ $\dot{v}(x)=\frac{\partial V}{\partial x}\dot{x}=2x(x+ue^{x})=2x^{2}(+\frac{ue^{x}}{x})$ $u=-2y/e^{y}=-2x/e^{x}$ $\dot{v}=-2x^{2}$ $V$ $x=0$ $V$ $x=0$ $x=0$ () $u$ 2.2 $\dot{x}_{t}=f(x_{t}, u_{t})+g(x_{t})\xi_{t}, y_{t}=h(x_{t})+\zeta_{t}$ (2) f,g, () $f(x, u)=$ $\xi_{t},$ $\zeta_{t}$ $x+ue^{x}$

99 (2) $dx_{t}=f(x_{t}, u_{t})dt+g(x_{t})dw_{t}, dy_{t}=h(x_{t})dt+dv_{t}$ (3) ((2) (3) ). $v_{t}$ $dw_{t},$ $[t, t+dt)$ $dv_{t}$ $dt$ $w,$ (3) $v_{t}$ $u_{t}$ $u_{t}=ky_{t}$ ( ) [5] $\mathcal{y}_{t}=\{y_{s} 0\leq s\leq t\}$ $z_{t}^{*}= \arg\min_{z_{t}\in \mathcal{y}_{t}}e[(x_{t}-z_{t})^{2}]$ $\pi_{t}(x)=e(x_{t} \mathcal{y}_{t})$ $x_{t}$ $\pi_{t}(x)=z_{t}^{*}$. $\pi_{t}(x)$ $(w_{t}, v_{t} )$ $d\pi_{t}(x)=\pi_{t}(f(x, u))dt+[\pi_{t}(xh(x))-\pi_{t}(x)\pi_{t}(h(x))][dy_{t}-\pi_{t}(h(x))dt]$ (4) $p_{t}(x)$ $=p_{t}(x \mathcal{y}_{t})$ $\pi_{t}(x)=e(x_{t} \mathcal{y}_{t})=\int_{r}xp_{t}(x \mathcal{y}_{t})dx$ (5) $dp_{t}(x)=[- \frac{\partial(p_{t}f)}{\partial x}(x)+\frac{}{2}\frac{\partial(p_{t}g^{2})}{\partial x^{2}}(x)]dt$ $+p_{t}(x)[h(x)-\pi_{t}(h(x))][dy_{t}-\pi_{t}(h(x))dt]$. (6) (4) (6) $\pi_{t}(h(x))$ $f(x, u)=$ $Ax+Bu,$ $g(x)=g,$ $h(x)=cx$ 2 $V_{t}$ ( ). $d\pi_{t}(x)=a\pi_{t}(x)dt+bu_{t}dt+v_{t}c^{t}[dy_{t}-c\pi_{t}(x)dt],$ $\dot{v}_{t}=av_{t}+v_{t}a^{t}-v_{t}c^{t}cv_{t}+gg^{t}.$

00 $x_{t}$ ( ) $u_{t}=k\pi_{t}(x)$ 2 LQG (Linear Quadratic Gaussian control) $J[u]= \frac{}{2}e[\int_{0}^{t}(x_{t}^{t}mx_{t}+u_{t}^{t}ru_{t})dt+x_{t}^{t}nx_{t}]$. (7) $M\geq 0,$ $N>0,$ $R\geq 0$ $x_{t}arrow 0$ $u_{t}^{opt}=-r^{-}b^{t}k_{t}\pi_{t}(x)$ ( ) $K_{t}$ $\dot{k}_{t}+k_{t}a+a^{t}k_{t}-k_{t}br^{-}b^{t}k_{t}+m=o.$ ( ) 3 (4) (6) [3] ( ) [2,6] 3. $\mathbb{p}(k)=p_{k}$ $k(k=, \ldots, 6)$ ( )

0 $\mathbb{p}$ ( even) $k $ $= \frac{\mathbb{p}(even k)}{\mathbb{p}(even)}\mathbb{p}(k)$, $\mathbb{p}$ ( odd) $k $ $= \frac{\mathbb{p}(odd k)}{\mathbb{p}(odd)}\mathbb{p}(k)$ $\mathbb{p}(k)$ $\mathbb{p}(k \bullet)$ $\mathbb{p}$( $k $ even) $=\{\begin{array}{l}0p_{2}/(p_{2}+p_{4}+p_{6})0p_{4}/(p_{2}+p_{4}+p_{6})0p_{6}/(p_{2}+p_{4}+p_{6})\end{array}$ $\mathbb{p}$( $k $ odd) $=\{\begin{array}{l}p_{}/(p_{}+p_{3}+p_{5})0p_{3}/(p_{}+p_{3}+p_{5})0p_{5}/(p_{}+p_{3}+p_{5})0\end{array}$ (8) $\hat{a}=diag\{a, b, a, b, a, b\}$ $A$ $a,$ $b$ $a,$ $b$ $A$ $\hat{e}_{}=diag\{,0,,0,,0\}$ $\hat{e}_{2}=diag\{0,,0,,0,\}$ $\hat{\rho}=$ diag $A=a\hat{E}_{}+b\hat{E}_{2}$ ( ). $\{p_{}, \ldots,p_{6}\}$ $\hat{\rho}_{odd}=\frac{\hat{e}_{}\hat{\rho}\hat{e}_{}}{tr(\hat{e}_{}\hat{\rho})}=\frac{}{p_{}+p_{3}+p_{5}}$diag $\{p_{},0,p_{3},0,p_{5},0\},$ $\hat{\rho}_{even}=\frac{\hat{e}_{2}\hat{\rho}\hat{e}_{2}}{h(\hat{e}_{2}\hat{\rho})}=\frac{}{p_{2}+p_{4}+p_{6}}$ diag $\{0,p_{2},0,p_{4},0,p_{6}\}$ (8) $\hat{\rho}$ $k$ $\hat{\rho}_{k}$ ( )

02 $ \phi\rangle_{a}$ $ \phi\rangle_{b}$, 2 $ \phi\rangle_{a} \phi\rangle_{b}arrow\hat{u}_{ab} \phi\rangle_{a} \phi\rangle_{b}.$ $\hat{u}_{ab}$ 2 $k$ $ \tilde{\phi}_{k}\rangle_{ab}=(i_{a}\otimes k\rangle_{b}\langle k )\hat{u}_{ab} \phi\rangle_{a} \phi\rangle_{b}$ $=(B\langle k \hat{u}_{ab} \phi\rangle_{b}) \phi\rangle_{a}\otimes k\rangle_{b}= \tilde{\phi}_{k}\rangle_{a}\otimes k\rangle_{b}\backslash \cdot$ (9) $ \tilde{\phi}_{k}\rangle_{a}$ $\dot{k}$ ( ). $\mathbb{p}(k)=ab \langle\tilde{\phi}_{k} \tilde{\phi}_{k}\rangle_{ab}=a\langle\tilde{\phi}_{k} \tilde{\phi}_{k}\rangle_{a}$ 3.2 $t$ $ \phi_{t}\rangle O\rangle$ (0). $[t, t+dt)$ $\hat{u}(t, t+dt)=\exp[-i\hat{h}dt+\hat{c}d\hat{b}_{t}^{\dagger}-\hat{c}^{\dagger}d\hat{b}_{t}]$. () $\hat{h}=\hat{h}\dagger$ $\hat{c}$ $\hat{b}_{t},\hat{b}_{t}^{\dagger}$ ( ) $d\hat{b}_{t}d\hat{b}_{t}=d\hat{b}_{t}^{\dagger}d\hat{b}_{t}=d\hat{b}_{t}^{\dagger}d\hat{b}_{t}^{\dagger}=0, d\hat{b}_{t}d\hat{b}_{t}^{\dagger}=dt.$

03 () $\hat{u}(t, t+dt)=\hat{i}-i\hat{h}dt-\frac{}{2}\hat{c}^{\dagger}\hat{c}dt+\hat{c}d\hat{b}_{t}^{\dagger}-\hat{c}^{\dagger}d\hat{b}_{t}$ ( ) $O$ $ \Phi_{t+dt}\rangle=\hat{U}(t, t+dt) \phi_{t}\rangle 0\rangle$ $=[ \hat{i}-i\hat{h}dt-\frac{}{2}\hat{c}^{\dagger}\hat{c}dt+\hat{c}d\hat{b}_{t}^{\dagger_{-\hat{\mathcal{c}}}\dagger}d\hat{b}_{t}] \phi_{t}\rangle 0\rangle$ $=[ \hat{i}-i\hat{h}dt-\frac{}{2}\hat{c}^{\dagger}\hat{c}dt+\hat{c}(d\hat{b}_{t}+d\hat{b}_{t}^{\dagger})] \phi_{t}\rangle 0\rangle.$ $d\hat{b}_{t} 0\rangle=0$ 2 3 $d\hat{b}_{t}+d\hat{b}_{t}^{\dagger}$ $d\hat{b}_{t}+d\hat{b}_{t}^{\dagger}$ $d\hat{b}_{t}+d\hat{b}_{t}^{\dagger}$ ( ) $xdt$ $ x\rangle$ $(d\hat{b}_{t}+d\hat{b}_{t}^{\dagger}) x\rangle=xdt x\rangle$ (2) $dt$ $[t, t+dt)$ $xdt$ $dy_{t}=xdt$ (3) $ x\rangle\langle x $ (9) $ \Phi_{t+dt}\rangle$ ( ) $ \tilde{\phi}_{t+dt}\rangle=\langle x \Phi_{t+dt}\rangle$ $= \langle x [\hat{i}-i\hat{h}dt-\frac{}{2}\hat{c}\dagger\hat{c}dt+\hat{c}(d\hat{b}_{t}+d\hat{b}_{t}^{\dagger})] \phi_{t}\rangle 0\rangle$ $= \langle x [\hat{i}-i\hat{h}dt-\frac{}{2}\hat{c}^{\dagger}\hat{c}dt+\hat{c}dy_{t}] \phi_{t}\rangle 0\rangle$ $=[ \hat{i}-i\hat{h}dt-\frac{}{2}\hat{c}^{\dagger}\hat{c}dt+\hat{c}dy_{t}] \phi_{t}\rangle\langle x O\rangle$. (4) $d\hat{b}_{t}+d\hat{b}_{t}^{\dagger}$ (2), (3) $dy_{t}$ ( ) $d \tilde{\phi}_{t}\rangle=[(-i\hat{h}-\frac{}{2}\hat{c}^{\dagger}\hat{c})dt+\hat{c}dy_{t}] \tilde{\phi}_{t}\rangle$ (5)

04 $y_{t}$ $ \phi_{t}\rangle$ $\langle x O\rangle$ (5) (4) $d\hat{q}_{t}=d\hat{b}_{t}+d\hat{b}j$ $d\hat{p}_{t}=(d\hat{b}_{t}-d\hat{b}_{t}^{\dagger})/2i$ $[d\hat{q}_{t}, d\hat{p}_{t}]=idt$ (6) $d\hat{p}_{t}$ $\langle x \psi\rangle$ $\langle x d\hat{p}_{t} \psi\rangle=-i\frac{d}{dx}\langle x \psi\rangle$ (7) $\langle x d\hat{q}_{t} \psi\rangle=xdt\langle x \psi\rangle$ $\langle 0 d\hat{b}_{t}^{\dagger}=0$ $\langle 0 d\hat{p}_{t} x\rangle=xdt\langle 0 x\rangle/2i$ $\langle 0 $ (2) (7) $\frac{d}{dx}\langle 0 x\rangle=-\frac{xdt}{2}\langle 0 x\rangle$ $\int \langle 0 x\rangle ^{2}dx=$ $\langle 0 x\rangle=(\frac{dt}{2\pi})^{/4}e^{-x^{2}dt/4}.$ $d\hat{q}_{t}$ $\langle\tilde{\phi}_{t+dt} \tilde{\phi}_{t+dt}\rangle dx$ $x$ $[x, x+dx)$ $\mathbb{p}([x, x+dx))=$ $\mathbb{p}([x, x+dx))$ $= \langle\phi_{t} [\hat{i}+i\hat{h}dt-\frac{}{2}\hat{c}^{\dagger}\hat{c}dt+\hat{c}^{\dagger}dy_{t}][\hat{i}-i\hat{h}dt-\frac{}{2}\hat{c}^{\dagger}\hat{c}dt+\hat{c}dy_{t}] \phi_{t}\rangle \langle x 0\rangle ^{2}dx$ $=(+\langle\hat{c}+\hat{c}^{\dagger}\rangle dy_{t})\sqrt{\frac{dt}{2\pi}}e^{-x^{2}dt/2}$ $= \sqrt{\frac{dt}{2\pi}}\exp[-\frac{dt}{2}(x-\langle\hat{c}+\hat{c}^{\dagger}\rangle)^{2}]dx$ $d\hat{q}_{t}$ $\langle\hat{c}+\hat{c}^{\uparrow}\rangle=\langle\phi_{t} (\hat{c}+\hat{c}^{\uparrow}) \phi_{t}\rangle$ $+\hat{c}^{\uparrow}\rangle dt$, $dy_{t}^{2}=dt$ $dy_{t}=$ xdt $dt$ $[t, t+dt)$ $dy_{t}=\langle\hat{c}+\hat{c}^{\uparrow}\rangle dt+dw_{t}$ (8)

05 $dw_{t}$ $[t, t+dt)$ $0$, $dt$ $\hat{c}+\hat{c}^{t}\rangle$ 2 (5) $ \phi_{t}\rangle$ $ \phi_{t}\rangle= \tilde{\phi}_{t}\rangle/\sqrt{\langle\tilde{\phi}_{t} \tilde{\phi}_{t}\rangle}$ $d \phi_{t}\rangle=[-i\hat{h}dt-\frac{}{2}(\hat{c}^{\dagger}\hat{c}-\langle\hat{c}+\hat{c}^{\dagger}\rangle\hat{c}+\frac{\langle\hat{c}+\hat{c}\dagger\rangle^{2}}{4})dt+(\hat{c}-\frac{\langle\hat{c}+\hat{c}^{\uparrow}\rangle}{2})dw_{t}] \phi_{t}\rangle$. (9) $dw_{t}$ (8) $ \phi_{t}\rangle$ (9) $(\hat{c}=0$ ) (9) $\hat{\rho}_{t}= \phi_{t}\rangle\langle\phi_{t} $ $d\hat{\rho}_{t}= \phi_{t+dt}\rangle\langle\phi_{t+dt} - \phi_{t}\rangle\langle\phi_{t}.$ $d\hat{\rho}_{t}=\mathcal{l}^{*}\hat{\rho}_{t}dt+[\hat{c}\hat{\rho}_{t}+\hat{\rho}_{t}\hat{c}^{\dagger}-\langle\hat{c}+\hat{c}^{\dagger}\rangle\hat{\rho}_{t}](dy_{t}-\langle\hat{c}+\hat{c}^{\dagger}\rangle dt)$. (20) $\mathcal{l}^{*}\hat{\rho}$ $\mathcal{l}^{*}\hat{\rho}=-i[\hat{h},\hat{\rho}]+\hat{c}\hat{\rho}\hat{c}^{\dagger\dagger\dagger}-\frac{}{2}\hat{c}\hat{c}\hat{\rho}-\frac{}{2}\hat{\rho}\hat{c}\hat{c}.$ (20) (20), (9) (6) $\hat{x}$ (4) $\pi_{t}(\hat{x})=$ $(\hat{x}\hat{\rho}_{t})$ Tr $d\pi_{t}(\hat{x})=\mathcal{l}\hat{x}dt+[\pi_{t}(\hat{x}\hat{c}+\hat{c}^{\uparrow}\hat{x})-\pi_{t}(\hat{c}+\hat{c}^{\uparrow})\pi_{t}(\hat{x})](dy_{t}-\pi_{t}(\hat{c}+\hat{c}^{\dagger})dt)$. (2) $\mathcal{l}\hat{x}=i[\hat{h},\hat{x}]+\hat{c}^{\dagger}\hat{x}\hat{c}-\frac{}{2}\hat{c}^{\dagger}\hat{c}\hat{x}-\frac{}{2}\hat{x}\hat{c}^{\uparrow}\hat{c}.$ (2) [7].

$\hat{j}_{z}$ 06 4 $z$ [8,9, 0,, 2, 3]. $\hat{j}_{z}$ (QND $=\sqrt{m}j_{z}$ ) $M$ $y$ $u_{t}$ $\hat{h}=u_{t^{\sqrt{}}y}\wedge$ $\hat{\rho}_{t}$ $\hat{\rho}_{t}$ $u_{t}$ $d \hat{\rho}=-i[u\hat{j}_{y},\hat{\rho}]dt+m(\hat{j}_{z}\hat{\rho}\hat{j}_{z}-\frac{}{2}\hat{j}_{z}^{2}\hat{\rho}-\frac{}{2}\hat{\rho}\hat{j}_{z}^{2})dt$ $+\sqrt{m}(\hat{j}_{z}\hat{\rho}+\hat{\rho}\hat{j}_{z}-2\langle\hat{j}_{z}\rangle\hat{\rho})(dy_{t}-2\sqrt{m}\langle\hat{j}_{z}\rangle dt)$. $\langle\hat{j}_{z}\rangle=$ Tr $(\hat{j}_{z}\hat{\rho})=\pi_{t}(\hat{j}_{z})$ $\hat{j}_{z}$ $de[\langle\triangle\hat{j}_{z}^{2}\rangle]/dt=-4e[\langle\delta\hat{j}_{z}^{2}\rangle^{2}]$ $\langle\delta\hat{j}_{z}^{2}\ranglearrow 0$ 2 [5]. $\hat{j}_{z}$ QND $\hat{j}_{z}$ $\hat{\rho}_{0}$ $x$ $\hat{j}_{z}$ $\hat{j}_{y}$

$\hat{j}_{z}$ 07 $\hat{\rho}_{t}$ [0,, 2] [8] [3]. $+$ [] H. Mabuchi and N. Khaneja, Principles and applications of control in quantum systems, Int. J. Robust and Nonlinear Control, 5, 647/667 (2005) [2] L. Bouten, R. van Handel, and M. R. James, $A$ discrete invitation to quantum filtering and feedback control, SIAM Review, 5, 239/36 (2009) [3] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control, Cambridge Univ. Press (2009) [4] 585, 2/27 (202) [5] [6] L. Bouten, R. van Handel, and M. R. James, An introduction to quantum filtering, SIAM J. Control Optim., 46, 299/224 (2007) [7] V. P. Belavkin, Quantum filtering of Markov signals with white quantum noise, $i$ Radiotechnika Electronika, 25, 445/453 (980) [8] L. Thomsen, S. Mancini, and H. M. Wiseman, Continuous quantum nondemolition feedback and unconditional atomic $spin$ squeezing, J. Phys. $B,$ $35$, 4937 (2002) [9] J. K. Stockton, R. van Handel, and H. Mabuchi, Deterministic Dicke state prepa-

08 ration with continuous measurement and control, Phys. Rev. $A,$ $70$, 02206 (2004) $R$ [0]. van Handel, J. K. Stockton, and H. Mabuchi, Feedback contorol of quantum state reduction, IEEE Trans. Automat. Contr., 50, 768/780 (2005) [] N. Yamamoto, K. Tsumura, and S. Hara, Feedback control of quantum entanglement in a two-spin system, Automatica, 43-6, 98/992 (2007) [2] M. Mirrahimi and $R$. van Handel, Stabilizing feedback controls for quantum systems, SIAM J. Control Optim., 46, 445/467 (2007) [3] J. K. Stockton, Continuous Quantum Measurement of Cold Alkali-Atom Spins, Ph.D Thesis, California Institute of Technology (2006)